The fatal current is 51 mA = 0.051 Ampere.
The resistance is 2,050Ω .
Voltage = (current) x (resistance)
= (0.051 Ampere) x (2,050 Ω) = 104.6 volts .
==================
This is what the arithmetic says IF the information in the question
is correct.
I don't know how true this is, and I certainly don't plan to test it,
but I have read that a current as small as 15 mA through the
heart can be fatal, not 51 mA .
If 15 mA can do it, and the sweaty electrician's resistance is
really 2,050 Ω, then the fatal voltage could be as little as 31 volts !
The voltage at the wall-outlets in your house is 120 volts in the USA !
THAT's why you don't want to stick paper clips or a screwdriver into
outlets, and why you want to cover unused outlets with plastic plugs
if there are babies crawling around.
Inertia is the property of all matter by which it tends to remain
in constant, uniform motion unless acted on by external force.
Answer:
16
Explanation:
The magnitude of the electrostatic force between two charged particles is given by

where
k is the Coulomb's constant
q1, q2 are the charges of the two particles
r is the separation between the particles
In this problem, the initial force between the particles is F.
Later, the distance between the two particles is increased by four, so
r' = 4r
So, the new force between the particles will be

So, the new force decreases by a factor of 16.