It’s atomic mass is what the number means.
Answer:
A. your running speed 1.5 m/s
B. your mass 70 kg
C. your de Broglie wavelength
m
Explanation:
Hello there!
In this case, since the equation for the calculation of the Broglie wavelength is:

We can assume a running speed of about 1.5 m/s and a mass of 70 kg, so the resulting Broglie wavelength is:

Best regards!
Answer:
The answer is IONIC BOND
Explanation:
Steroidogenic acute regulatory, (StAR) protein is a type of globular protein, which allows it act as an active catalyst on substrates. Because the substrates on which enzymes act usually have higher molecular weights of several hundred as compared to the enzymes, only a fraction of the enzyme's surface is in contact with the substrate. This region of contact called the <em>active site</em>, is as a result of the protein folding itself into a tertiary structure.
Once the correct substrate has bound at the active site of the enzyme, an enzyme-substrate complex is created. The substrate is usually held in the complex by combinations of electrical attraction, hydrophobic repulsion, or hydrogen bonding between and from the amino acid; the strongest of which is the ionic/electrostatic bonding due to larger amount of ionic "R" groups in the protein structure.
So whilst all these inter-molecular interactions are possible, the strongest would be <u>ionic bond.</u>
Answer:
The direct channels by which extraction can affect the economy are of particular interest. The development of mines or oil and gas fields can result in significant shocks to a regional economy, generating jobs and drawing in capital from other regions and countries.
Explanation:
Answer:
666,480 Joules or 669.48 kJ
Explanation:
We are given;
- Volume of water as 2.0L or 2000 ml
but, density of water is 1 g/ml
- Therefore, mass of water is 2000 g
- Initial temperature as 20 °C
- Final temperature as 99.7° C
Required to determine the heat change
We know that ;
Heat change = Mass × Temperature change × specific heat
In this case;
Specific heat of water is 4.2 J/g°C
Temperature change is 79.7 °C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 Joules 0r 669.48 kJ
Thus, the heat change involved is 666,480 Joules or 669.48 kJ