Scientists should control most possible variables in experiments to get the most valid and correct data. If many variables are included in experiments it is more difficult to interpret what is causing a different outcome.
Answer:
I am confused as to what you're asking.
Answer:
The new pressure is 0.5 atm
Explanation:
Step 1: Data given
Volume of oxygen = 300 mL = 0.300 L
Pressure = 1.00 atm
Temperature = 300 K
The volume increases to 1000mL = 1.00 L
The temperature increases to 500 K
Step 2: Calculate the new pressure
(P1*V1)/T1 = (P2*V2)/T2
⇒with P1 = the initial pressure = 1.00 atm
⇒with V1 = the initial volume = 0.300 L
⇒with T1 = the initial temperature = 300 K
⇒with P2 = the new pressure = TO BE DETERMINED
⇒with V2 = the increased volume = 1.00 L
⇒with T2 = the increased temperature = 500 K
(1.00 atm* 0.300 L)/300 K = (P2 * 1.00L) / 500 K
P2 = (1.00 *0.300 * 500) / (300 *1.00)
P2 = 0.5 atm
The new pressure is 0.5 atm
They diffuse through small pores at the bottom of the leaf called stomata.
Plants can open and close their stomata, they open them to get water and carbon dioxide in but then close them to ensure the water doesn't 'leak' back out. This is important for plants growing in drier conditions like the cactus.