Answer:
B) A catalyst can accelerate a reaction.
Explanation:
Raising of the boiling point is a colligative property. That means that it depends on the number of particles dissolved. The greater the number of particles the greater the increase in the boiling point. So, you can compare the effect of these solutes in the increase of the boiling point by writing the chemical equations and comparing the number of particles dissolved: 1)ionic lithium chloride, LiCl(s) --> Li(+) + Cl (-) => 2 ions; 2) ionic sodium chloride, NaCl(s) --> Na(+) + Cl(-) => 2 ions; 3) molecular sucrose, C12H22O11 (s) ---> C12H22O11(aq) => 1 molecule; 4) ionic phosphate, Na3PO4 --> 3Na(+) + PO4 (3-) => 4 ions; 5) ionic magnesium bromide, MgBr2 --> Mg(2+) + 2 Br(-) => 3 ions. <span>So, ionic phosphate produces the greatest number of particles and it will cause the greatest increase of the boiling point.</span><span />
Explanation:
1. Explain how groups 1A-8A in the periodic table are organized by their number of valence electrons.
The valence electrons in an atom are the outermost shell electrons. They are the most loosely held electrons in an atom.
Coincidentally, the periodic table of elements divided into vertical groups and horizontal periods can be said to be arranged according to the number of valence electrons.
- Atomic numbers are used to arrange elements on the periodic table.
- Down a group, the number of electronic shell increases. More electrons are added to new energy levels.
- As we move from left to right across a period, the number of electrons in elements increases but electronic shell is the same.
- Down a group electronic shell increases but the number of valence electrons are the same.
- All elements in Group 1A has just one valence electrons, Group 2A has two valence electrons.........Group 8A has eight valence electrons.
- Moving across groups is synonymous to moving from left to right on the periodic table.
- Due to this trend, the periodic table is arranged based on the number of valence electrons.
3. explain how you know the number of valence electrons for each group.
The number of valence electrons in a group is the group number:
Group Number valence electrons
1A 1
2A 2
3A 3
4A 4
5A 5
6A 6
7A 7
8A 8
learn more:
Periodic table brainly.com/question/1971327
#learnwithBrainly
The HNO3 is considered to be a Bronsted - Lowry acid, when this substance 'HNO3', will donate a proton, then it will form another substance. It will form two substances when the proton is donated in the water molecule. The two substances that will be formed is a nitrate iron and a hydronium ion.
Answer:
Explanation:
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. Conceptually, the oxidation state, which may be positive, negative or zero, is the hypothetical charge that an atom would have if all bonds to atoms of different elements were 100% ionic, with no covalent component. This is never exactly true for real bonds.
The term oxidation was first used by Antoine Lavoisier to signify reaction of a substance with oxygen. Much later, it was realized that the substance, upon being oxidized, loses electrons, and the meaning was extended to include other reactions in which electrons are lost, regardless of whether oxygen was involved.
Helped?
Brainliest?