Answer:
The frequency is
Explanation:
From the question we are told that
The energy required to ionize boron is
Generally the ionization energy of boron pre atom is mathematically represented as
Here is the Avogadro's constant with value
So
=>
Generally the energy required to liberate one electron from an atom is equivalent to the ionization energy per atom and this mathematically represented as
=>
Here h is the Planks constant with value
So
=>
The molar mass of NH4NO3 in g/mol is 80g/mol.
HOW TO CALCULATE MOLAR MASS:
The molar mass of a compound can be calculated by summing the atomic masses of its constituent elements.
In ammonium nitrate (NH4NO3), there are nitrogen, hydrogen, and oxygen elements.
- Atomic mass of nitrogen = 14
- Atomic mass of oxygen = 16
- Atomic mass of hydrogen = 1
Molar mass of NH4NO3 = 14 + 1(4) + 14 + 16(3)
Molar mass of NH4NO3 = 80g/mol
- Therefore, the molar mass of NH4NO3 in g/mol is 80g/mol.
Learn more about molar mass at: brainly.com/question/8101390?referrer=searchResults
<span><span>When water vapor condenses, 2260 joules/gram heat energy will be released into the atmosphere.
To add, </span>heat energy<span> <span>(or </span>thermal energy<span> or simply </span>heat) is defined as a form of energy<span> which transfers among particles in a substance (or system) by means of kinetic </span>energy<span> of those particles. In other words, under kinetic theory, the </span>heat<span> is transferred by particles bouncing into each other.</span></span></span>
Answer:
V = 42.6 L
Explanation:
Given data:
Number of moles of Cl₂ = 1.9 mol
Temperature and pressure = standard
Volume occupy = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
By putting values,
1 atm × V = 1.9 mol ×0.0821 atm.L /mol.K × 273.15 k
V = 42.6 atm.L / 1 atm
V = 42.6 L