Answer:
2.8 x 10²³ molecules H₂O
1.4 x 10²³ molecules O₂
Explanation:
First, you will need the balanced chemical equation for the formation of water:
2H₂ + O₂ -> 2H₂O
This will help in determining the mole ratios between water and oxygen, which we will need later.
Let's first calculate the number of H₂O (water) molecules. This will require stoichiometry. We are also given the mass, so we must convert mass into moles, then moles into molecules. mass -> moles -> molecules
8.5 g H₂O x (1 mol H₂O/18.01528 g H₂O) x (6.02 x 10²³ molecules H₂O/1 mol H₂O) = 2.8404 x 10²³ molecules H₂O
Rounded to 2 significant digits: 2.8 x 10²³ molecules H₂O
Now, to find the molecules of water, we can begin with the same stoichiometric equation, but before we convert to molecules, we will have to convert moles of water to moles of oxygen. This is where we will use the mole ratio of water to oxygen we got from the balanced chemical equation earlier. 2H₂O:1O₂
8.5 g H₂O x (1 mol H₂O/18.01528 g H₂O) x (1 mol O₂/2 mol H₂O) x (6.02 x 10²³ molecules O₂/1 mol O₂) = 1.4202 x 10²³ molecules O₂
Rounded to 2 significant digits: 1.4 x 10²³ molecules O₂
8760 hours in a year 525600 minutes in one year 8760 times 60 equals 525600 minutes now multiply that by 5 to get <span>2628000 minutes</span>
Answer:
Therefore it takes 8.0 mins for it to decrease to 0.085 M
Explanation:
First order reaction: The rate of reaction is proportional to the concentration of reactant of power one is called first order reaction.
A→ product
Let the concentration of A = [A]
![\textrm{rate of reaction}=-\frac{d[A]}{dt} =k[A]](https://tex.z-dn.net/?f=%5Ctextrm%7Brate%20of%20reaction%7D%3D-%5Cfrac%7Bd%5BA%5D%7D%7Bdt%7D%20%3Dk%5BA%5D)
![k=\frac{2.303}{t} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
[A₀] = initial concentration
[A]= final concentration
t= time
k= rate constant
Half life: Half life is time to reduce the concentration of reactant of its half.

Here 


To find the time takes for it to decrease to 0.085 we use the below equation
![k=\frac{2.303}{t} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
![\Rightarrow t=\frac{2.303}{k} log\frac{[A_0]}{[A]}](https://tex.z-dn.net/?f=%5CRightarrow%20t%3D%5Cfrac%7B2.303%7D%7Bk%7D%20log%5Cfrac%7B%5BA_0%5D%7D%7B%5BA%5D%7D)
Here ,
, [A₀] = 0.13 m and [ A] = 0.085 M


Therefore it takes 8.0 mins for it to decrease to 0.085 M
Answer:
The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.
Explanation:
A molar heat of vaporization of 40.66 kJ / mol means that 40.66 kJ of heat needs to be supplied to boil 1 mol of water at its normal boiling point.
To know the amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure, the number of moles represented by 3.11 g of water is necessary. Being:
the molar mass of water is:
H₂O= 2* 1 g/mole + 16 g/mole= 18 g/mole
So: if 18 grams of water are contained in 1 mole, 3.11 grams of water in how many moles are present?

moles of water= 0.1728
Finally, the following rule of three can be applied: if to boil 1 mole of water at its boiling point it is necessary to supply 40.66 kJ of heat, to boil 0.1728 moles of water, how much heat is necessary to supply?

heat= 7.026 kJ
<u><em>The amount of heat that is absorbed when 3.11 g of water boils at atmospheric pressure is 7.026 kJ.</em></u>
<span>In order convert the mass of a substance to its number of moles The conversion factor is the reciprocal of the molecular weight of the substance. Hence, for the given element in the problem- potassium, the equivalence factor is d. </span><span>(1 mol K/39.10 g K). </span>