Answer:
2812.6 g of H₂SO₄
Explanation:
From the question given above, the following data were obtained:
Mole of H₂SO₄ = 28.7 moles
Mass of H₂SO₄ =?
Next, we shall determine the molar mass of H₂SO₄. This can be obtained as follow:
Molar mass of H₂SO₄ = (1×2) + 32 + (16×4)
= 2 + 32 + 64
= 98 g/mol
Finally, we shall determine the mass of H₂SO₄. This can be obtained as follow:
Mole of H₂SO₄ = 28.7 moles
Molar mass of H₂SO₄ =
Mass of H₂SO₄ =?
Mole = mass / Molar mass
28.7 = Mass of H₂SO₄ / 98
Cross multiply
Mass of H₂SO₄ = 28.7 × 98
Mass of H₂SO₄ = 2812.6 g
Thus, 28.7 mole of H₂SO₄ is equivalent to 2812.6 g of H₂SO₄
Answer:
No one is correct. The correct expression is:
Keq = [H₂]² . [O₂]² / [H₂O]²
Explanation:
To build the Keq expression in a chemical equilibrium you must consider the molar concentrations of reactants / products, and they must be elevated to the stoichiometric coefficient.
The balance reaction is:
<u>2</u> H₂O (g) ⇄ <u>2</u> H₂ (g) + O₂ (g)
Keq = [H₂]² . [O₂] / [H₂O]²
In opposite side: <u>2</u> H₂ (g) + O₂ (g) ⇄ <u>2</u> H₂O (g)
Keq = [H₂O]² / [H₂]² . [O₂]
Answer:
Hi friend, the answer to your question is <em>NERVOUS SYSTEM</em>.
Explanation:
Answer:
Explanation:
Building Vocabulary
Match each term with its definition by writing the letter of the correct definition on
the line beside the term in the left column.
5. nucleus b
6. proton f
7. neutron h
8. electron d
9. atomic number g
10. isotopes c
11. mass number a
12. energy level e
a. the sum of protons and neutrons in the nucleus of an
atom
b. the very small center core of an atom
c. atoms of the same element that differ in the number
of neutrons, but have the same number of protons
d. the particle of an atom that moves rapidly in the
space outside the nucleus
e. a specific amount of energy related to the movement
of electrons in atoms
f. the particle of an atom with a positive charge
g. the number of protons in the nucleus of every atom
of an element
h. the particle of an atom that is neutral
-. mass number a.
12. energy level e
Answer: If you think about it, B. would be the most reasonable answer with the given factors.