102 grams of ammonia is formed when 3 moles of nitrogen and 6.7 moles of hydrogen reacts.
Explanation:
The equation given is of Haeber's process in which the nitrogen is limiting factor in the ammonia formation and hydrogen if in excess gets delimited.
We know that 1 mole of Nitrogen gives 2 moles of ammonia.
We have 3 moles of nitrogen here,
So, 6 moles of ammonia will be form
so from the formula
no of moles=mass/atomic mass
mass= no. of moles*atomic mass
= 6*17
= 102 grams of ammonia will be formed.
So, 6 moles or 102 grams of ammonia is formed when 3 mole of nitrogen and 6.7 mole of hydrogen reacts.
Answer:
If the concentration of product D is increased, the rate of the reverse reaction would increase.
Explanation:
Chemical reaction:
A + B ⇄ C + D
In given condition the equilibrium is disturb by increasing the concentration of product.
When the concentration of product D is increased the system will proceed in backward direction in order to regain the equilibrium. Because when the product concentration is high it means reaction is not on equilibrium state the reaction will proceed backward direction to regain the equilibrium state.
According to the Le- Chatelier principle,
At equilibrium state when stress is applied to the system, the system will behave in such a way to nullify the stress.
The equilibrium can be disturb,
By changing the concentration
By changing the volume
By changing the pressure
By changing the temperature
Dynamic equilibrium means that the proportion is equal. The fact that the equation is at equilibrium suggests that the equation is balanced and therefore the answer must be 2.0 mol because that allows the products and reactants to level out...
Pure silicon is a poor conductor at room temperature because it has 4 valence electrons