<span>The particles in a liquid are not stuck in fixed positions, which is why liquids flow to take the shape of a container into which they are placed. Hope this helps :D</span>
Answer:
Q = mcT ...you can either substitute the molar heat capacity of water in the place of c or the specific heat capacity of water.
Explanation:
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
I think B
Hope this helps!
M=11.20 g
m(H₂)=0.6854 g
M(H₂)=2.016 g/mol
M(Mg)=24.305 g/mol
M(Zn)=65.39 g/mol
w-?
m(Mg)=wm
m(Zn)=(1-w)m
Zn + 2HCl = ZnCl₂ + H₂
m₁(H₂)=M(H₂)m(Zn)/M(Zn)=M(H₂)(1-w)m/M(Zn)
Mg + 2HCl = MgCl₂ + H₂
m₂(H₂)=M(H₂)m(Mg)/M(Mg)=M(H₂)wm/M(Mg)
m(H₂)=m₁(H₂)+m₂(H₂)
m(H₂)=M(H₂)(1-w)m/M(Zn)+M(H₂)wm/M(Mg)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
m(H₂)=M(H₂)m{(1-w)/M(Zn)+w/M(Mg)}
(1-w)/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
1/M(Zn)-w/M(Zn)+w/M(Mg)=m(H₂)/{M(H₂)m}
w(1/M(Mg)-1/M(Zn))=m(H₂)/{M(H₂)m}-1/M(Zn)
w=[m(H₂)/{M(H₂)m}-1/M(Zn)]/(1/M(Mg)-1/M(Zn))
w=0.583 (58.3%)