Answer:
D. Hydrogen bonds between complementary base pairs89
Explanation:
A DNA molecule is composed of two long polynucleotide chains made of four types of nucleotide subunits, two purines (adenine and guanine) and two pyrimidines (cytosine and thymine). These nucleotides are joined by covalent bonds forming a phosphate-sugar backbone. <em>These strands are held to one another with hydrogen bonds between the base portions of complementary nucleotides.</em>
I hope you find this information useful and interesting! Good luck!
Answer:
about 79% (79.04369332 to be exact)
Explanation:
Percent composition=(Molar mass of element x amount of it)/Molar mass of compound x 100
Br= 3 x 79.9/303.25 x100=79.04369332
Answer:
51207 torr is the new pressure of the gas
Explanation:
We can solve this question using combined gas law that states:
P1V1T2 = P2V2T1
<em>Where P is pressure, V volume and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em> </em>
Computing the values of the problem:
P1 = 710torr
V1 = 5.0x10²mL
T1 = 273.15 + 30°C = 303.15K
P2 = ?
V2 = 25mL
T2 = 273.15 + 820°C = 1093.15K
Replacing:
710torr*5.0x10²mL*1093.15K = P2*25mL*303.15K
3.881x10⁸torr*mL*K = P2 * 7.579x10³mL*K
P2 = 51207 torr is the new pressure of the gas
First. let's write the reaction formula: HBr +LiOH ----> LiBr + H₂O
let's get the moles of LiOH first
moles= Molarity x Liters
moles= 0.253 M x 0.01673 Liter= 0.00423 moles LiOH
using the balanced equation, you can see that 1 mol LiOH is equal to 1 mol HBr. so:
0.00423 mol LiOH = 0.00423 mol HBr
now let's find the concentration
molarity= mol/ Liters
0.00423 mol/ 0.01000 Liters= 0.423 M