<h3>
Answer:</h3>
0.111 J/g°C
<h3>
Explanation:</h3>
We are given;
- Mass of the unknown metal sample as 58.932 g
- Initial temperature of the metal sample as 101°C
- Final temperature of metal is 23.68 °C
- Volume of pure water = 45.2 mL
But, density of pure water = 1 g/mL
- Therefore; mass of pure water is 45.2 g
- Initial temperature of water = 21°C
- Final temperature of water is 23.68 °C
- Specific heat capacity of water = 4.184 J/g°C
We are required to determine the specific heat of the metal;
<h3>Step 1: Calculate the amount of heat gained by pure water</h3>
Q = m × c × ΔT
For water, ΔT = 23.68 °C - 21° C
= 2.68 °C
Thus;
Q = 45.2 g × 4.184 J/g°C × 2.68°C
= 506.833 Joules
<h3>Step 2: Heat released by the unknown metal sample</h3>
We know that, Q = m × c × ΔT
For the unknown metal, ΔT = 101° C - 23.68 °C
= 77.32°C
Assuming the specific heat capacity of the unknown metal is c
Then;
Q = 58.932 g × c × 77.32°C
= 4556.62c Joules
<h3>Step 3: Calculate the specific heat capacity of the unknown metal sample</h3>
- We know that, the heat released by the unknown metal sample is equal to the heat gained by the water.
4556.62c Joules = 506.833 Joules
c = 506.833 ÷4556.62
= 0.111 J/g°C
Thus, the specific heat capacity of the unknown metal is 0.111 J/g°C
A system is a part of the <em>physical</em> universe defined <em>arbitrarily</em> for observation purposes.
Boundaries are a part of the <em>physical</em> universe that are around the system.
In a scientific sense, a system is a part of the <em>physical</em> universe whose boundaries, that is, the limit between the system and its surroundings, are defined <em>arbitrarily</em> for observation purposes.
A system contains at least a model, represented in a phenomenological way, and it can be isolated (no mass nor energy interactions), closed (no mass interactions) or open.
The surroundings are a part of the <em>physical</em> universe that are around the system.
An example is a coffee-maker, where coffee-maker the system and air represents the surroundings, the coffee-maker receives energy from a heat source to warm up itself and releases part of such energy to the air.
We kindly invite to check this question on systems and surroundings: brainly.com/question/6044762
The compound
will have a triple bond.
Explanation:
A compound which consists of carbon and hydrogen atoms is known as a hydrocarbon.
Alkanes, alkenes and alkynes are all hydrocarbons.
- General chemical formula of an alkane is
. In an alkane molecule, all the atoms will be bonded through single bonds.
For example,
is propane.
- General chemical formula of an alkene is
. An alkene molecule will have atleast one double bond between two carbon atoms.
For example,
is ethene.
- General chemical formula of an alkyne is
. An alkyne will have atleast one triple bond between two carbon atoms.
For example,
is propyne.
Thus, we can conclude that out of the given options
will have a triple bond.
Answer:
3. Pour the unknown solid and water into beaker, which weighs 50 grams.