Answer:
These properties are basically the inverse of each other.
Explanation:
- Electronegativity is the tendency of an atom to attract an electron and make it a part of its orbital.
Ionization enthalpy, is the energy required to remove an electron from an atom.
- More electronegative atoms have high ionization enthalpies If the energy required to remove an electron is less, i.e. the atom has more tendency to give electron, it would thus have less tendency to take electron.
- Values and tendency of electronegativity in the periodic table: In general, the electronegativity of a non‐metal is larger than that of metal. For the elements of one period the electronegativities increase from left to right across the periodic table. For the elements of one main group the electronegativities decrease from top to bottom across the periodic table. To the subgroup elements, there’s no regular rule.
- Values and tendency of ionization potential in the periodic table: The first ionization energy is the energy which is required when a gaseous atom/ion loses an electron to form a gaseous +1 valence ion. The energy which is required for a gaseous +1 valence ion to loose an electron to form a gaseous +2 valence ion, is called the second ionization energy of an element. In general, the second ionization energy is higher than the first ionization energy of an element.
The first ionization energies of the elements of one period increase from the left to the right across the periodic table. According to the elements of main group, the first ionization energies generally decreases from top to bottom across the periodic table.
PH of solution will be greater than seven (pH>7), that means that solution is basic (<span>pH above </span>7<span> is a base, the higher the number, the stronger is the base).
</span>pH (potential of hydrogenis) is a measure of the hydrogen ion (H⁺) concentration of a solution. <span>Solutions with a pH less than 7 are acidic.</span>
Answer:
First start with the ones we know
Explanation:
1. small - gene
2.chromosome - chromosomes contain genes so they must be bigger
3.dna- is all the chromosomes (genetic material)
A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell
a pair - so must be bigger than one chromosome
1. small - gene
2.chromosome - chromosomes contain genes so they must be bigger
3. homologus pair
4.dna- is all the chromosomes (genetic material)
now 5.
A gene consists of enough DNA to code for one protein, and a genome is simply the sum total of an organism's DNA. DNA is long and skinny, capable of contorting like a circus performer when it winds into chromosomes.
1. small - gene
2.chromosome - chromosomes contain genes so they must be bigger
3. homologus pair
4.dna- is all the chromosomes (genetic material)
5. genome - all the DNA
Cell
Nucleus
DNA
Chromosome
Gene
17.8 mL NaOH
<em>Step 1.</em> Write the chemical equation
Fe^(2+) + 2NaOH → Fe(OH)2 + 2Na^(+)
<em>Step 2.</em> Calculate the moles of Fe^(2+)
Moles of Fe^(2+) = 500 mL Fe^(2+) × [0.0230 mmol Fe^(2+)]/[1 mL Fe^(2+)]
= 11.50 mmol Fe^(2+)
<em>Step 3.</em> Calculate the moles of NaOH
Moles of NaOH = 11.50 mmol Fe^(2+) × [2 mmol NaOH]/[1 mmol Fe^(2+)]
= 23.00 mmol NaOH
<em>Step 4.</em> Calculate the volume of NaOH
Volume of NaOH = 23.00 mmol NaOH × (1 mL NaOH/1.29 mmol NaOH)
= 17.8 mL NaOH