Answer: E = 2.455 x 10^5 N/C
Explanation:
q1 = 1.2x10^-7C
q2 = 6.2x10^-8C
Electric field, E = kQ/r²
where k = 9.0x10^9
since the location is (27 - 5)cm from q1
hence electric field, E1 = k*q1/r²
E1= (9x10^9 x 1.2x10^-7)/(0.22)² = 22314.05 N/C
for q2:
E1 = k*q2/r²
E2 at 5cm
E2 = (9x10^9 x 6.2x10^-8)/(0.05)² = 223200 N/C
Hence, the total electric field at 5cm position is
E = E1 + E2
E = 22314.05 + 223200 = 245514.05 N/C
E = 2.455 x 10^5 N/C
Hello!
The half-life is the time of half-disintegration, it is the time in which half of the atoms of an isotope disintegrate.
We have the following data:
mo (initial mass) = 43 g
m (final mass after time T) = ? (in g)
x (number of periods elapsed) = ?
P (Half-life) = 20 minutes
T (Elapsed time for sample reduction) = 80 minutes
Let's find the number of periods elapsed (x), let us see:






Now, let's find the final mass (m) of this isotope after the elapsed time, let's see:




I Hope this helps, greetings ... DexteR! =)
Well, something that I noticed is that the left side is equal to the right side meaning that the sum of the right side is equal to the sun of the left side.
Answers are Intermolecular and London dispersion