Answer:
y = -3x + 1
Step-by-step explanation:
hope this is right!
563 is the answer to your question
Answer:
(1)
Step-by-step explanation:
Data given and notation
n=100 represent the random sample taken
estimated proportion with the survey
is the value that we want to test
represent the significance level
z would represent the statistic (variable of interest)
represent the p value (variable of interest)
Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the true proportion is lower than 0.41.:
Null hypothesis:
Alternative hypothesis:
When we conduct a proportion test we need to use the z statistic, and the is given by:
(1)
The One-Sample Proportion Test is used to assess whether a population proportion is significantly different from a hypothesized value .
Calculate the statistic
Since we have all the info requires we can replace in formula (1) like this:
Answer:
P(A∪B) = 1/3
Step-by-step explanation:
Red Garments = 1 red shirt + 1 red hat + 1 red pairs of pants
Total Red Garments = 3
Green Garments = 1 green shirt + 1 green scarf + 1 green pairs of pants
Total Green Garments = 3
The total number of garments = Total Red Garments + Total Green Garments:
3 + 3 = 6
Let A be the event that he selects a green garment
P(A) = Number of required outcomes/Total number of possible outcomes
P(A) = 3/6
Let B be the event that he chooses a scarf
P(B) = 1/6
The objective here is to determine P(A or B) = P(A∪B)
Using the probability set notation theory:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∩B) = Probability that a green pair of pant is chosen = P(A) - P(B)
= 3/6-1/6
= 2/6
P(A∪B) = 1/2 + 1/6 - 2/6
P(A∪B) = 2/6
P(A∪B) = 1/3
Okay so x represents the amount of tickets sold. So first, you’d add the $40 + $70 which equals $110. So x = $110.
Now we have to solve for y. Same thing but with different numbers. $200 + $260 = $460.
The answer is (110,460)
x. y.