Answer:

Explanation:
We are given that


We have to find the new potential difference of the capacitor.
When the capacitor is disconnected then the charge stored in capacitor is constant.
When we introduce material of dielectric constant k between the plates of capacitor then the capacitance of capacitor increases k times.




Using the formula


Hence, the new potential difference 
closing cost is the term to describe Fees associated with buying and finalizing your loan.
Answer:
F = 1.2×10⁻³ N
Explanation:
From the question,
Applying newton's second law of motion,
F = m(v-u)/t................... Equation 1
Given: F = magnitude of the average force exerted on the ball, m = mass of the ball, v = final velocity, u = initial velocity, t = time of contact.
Note: let downward be negative and upward be positive.
Given: m = 48 g = 48/1000 = 0.048 kg, v = 17 m/s, u = -28 m/s (downward),
t = 1800 s
Substitute into equation 1
F = 0.048(17-[28])/1800
F = 1.2×10⁻³ N
Answer: 7 kg bowling ball must move with a speed of 2.8 m/s so that it has the same kinetic energy.
Explanation:
Kinetic energy is the energy possessed by a body by virtue of its motion.

m = mass of object
v= velocity of the object

b) for a 7 kg bowl to have kinetic energy of 27 Joules:



Thus 7 kg bowling ball must move with a speed of 2.8 m/s so that it has the same kinetic energy
Answer:
It would take the object 5.4 s to reach the ground.
Explanation:
Hi there!
The equation of the height of a free-falling object at any given time, neglecting air resistance, is the following:
h = h0 + v0 · t + 1/2 · g · t²
Where:
h = height of the object at time t.
h0 = initial height.
v0 = initial velocity.
g = acceleration due to gravity (-32.2 ft/s² considering the upward direction as positive).
t = time
Let´s supose that the object is dropped and not thrown so that v0 = 0. Then:
h = h0 + 1/2 · g · t²
We have to find the time at which h = 0:
0 = 470 ft - 1/2 · 32.2 ft/s² · t²
Solving for t:
-470 ft = -16.1 ft/s² · t²
-470 ft / -16.1 ft/s² = t²
t = 5.4 s