1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
7

What is the value of x in the expression: x = p(p+q) + 4 if p = -2 and q = 7

Physics
1 answer:
Troyanec [42]3 years ago
3 0
-2(-2+7) +4 is how you would set it up


(4+(-14) + 4

-10 + 4 = -6

x = -6


The final answer you should get is -6
You might be interested in
How do you say come by in spanish
Arlecino [84]
Conseguir

example: donde puedo conseguir azúcar.

Where can I come by sugar
4 0
3 years ago
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
3. A model rocket takes 0.05 seconds to speed up from rest to its maximum velocity of 80 m/s.
nikklg [1K]

Answer:

1600 \frac{m}{s^2}

Explanation:

Acceleration is defined as the change in velocity divided by the time it took to produce such change. The formula then reads:

a = \frac{change-in-velocity}{time} = \frac{Vf-Vi}{t}

Where Vf is the final velocity of the object, (in our case 80 m/s)

Vi is the initial velocity of the object (in our case 0 m/s because the object was at rest)

and t is the time it took to change from the Vi to the Vf (in our case 0.05 seconds.

Therefore we have:

a = \frac{80 m/s - 0 m/s}{0.05 sec} = 1600 \frac{m}{s^2}

Notice that the units of acceleration in the SI system are \frac{m}{s^2} (meters divided square seconds)

7 0
3 years ago
Read 2 more answers
A bicycle wheel has a diameter of 63.0 cm and a mass of 1.75 kg. Assume that the wheel is a hoop with all of the mass concentrat
Masteriza [31]

Answer:

F2 = 834 N

Explanation:

We are given the following for the bicycle;

Diameter; d1 = 63 cm = 0.63 m

Mass; m = 1.75 kg

Resistive force; F1 = 121 N

For the sprocket, we are given;

Diameter; d2 = 8.96 cm = 0.0896 m

Radius; r2 = 0.0896/2 = 0.0448 m

Radial acceleration; α = 4.4 rad/s²

Now moment of inertia of the wheel which is assumed to be a hoop is given by; I = m(r1)²

Where r1 = (d1)/2 = 0.63/2

r1 = 0.315 m

Thus, I = 1.75 × 0.315²

I = 0.1736 Kg.m²

The torque is given by the relation;

I•α = F1•r1 - F2•r2

Where F2 is the force that must be applied by the chain to give the wheel an acceleration of 4.40 rad/s².

Thus;

0.1736 × 4.4 = (121 × 0.315) - (0.0448F2)

>> 0.76384 = 38.115 - (0.0448F2)

>> 0.0448F2 = 38.115 - 0.76384

>> F2 = (38.115 - 0.76384)/0.0448

>> F2 = 833.73 N

Approximately; F2 = 834 N

7 0
3 years ago
0.75 km expressed in centimeters
disa [49]
75000 lol enjoy..............using up 20 characters 
7 0
3 years ago
Other questions:
  • Why is the direction of position V upwards?
    5·1 answer
  • Please help me with part b.
    11·1 answer
  • As an auto mechanic, you need to determine the emf and internal resistance of an old battery. you perform these two measurements
    12·1 answer
  • The volume flow rate of blood leaving the heart to circulate throughout the body is about 5 L/min for a person at rest. All this
    7·1 answer
  • If the mass of a ball B is 1 kilogram and it’s speed is 1 m/sec. the mass and the speed of ball A is three times the mass and sp
    11·2 answers
  • Which is greater, the mass of the compounds before a chemical reaction or the mass of the compounds after a chemical reaction?
    9·1 answer
  • What is an atomic nucleus
    8·2 answers
  • A 65kg has the weight force of
    9·1 answer
  • 11. The professor who first
    10·1 answer
  • IF YOU ANSWER THESE 3 QUESTIONS! I WILL GIVE YOU BRAINEST!!! 17 POINTS!!!
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!