Answer:
4.96×10¯¹⁰ N
Explanation:
The following data were obtained from the question:
Mass 1 (M1) = 300 Kg
Mass 2 (M2) = 300 Kg
Separating distance (r) = 110 m
Gravitational constant (G) = 6.67×10¯¹¹ Nm²/Kg²
Gravitational force (F) =?
The gravitational force between the two goal posts can be obtained as follow:
F = GM1M2 / r²
F = 6.67×10¯¹¹ × 300 × 300 / 110²
F = 6.003×10¯⁶ / 12100
F = 4.96×10¯¹⁰ N
Therefore the gravitational force between the two goal posts is 4.96×10¯¹⁰ N
The evidence that supports continental drift and plate tectonics includes different fossils, the same rocks and the shapes of continents that fit together.
<h3>What is continental drift?</h3>
Continental drift is a theory that states continents once were part of one big landmass known as Pangea.
Nowadays, the theory of continental drift proposed by Alfred Wegener has been replaced by plate tectonics.
In conclusion, the evidence that supports continental drift and plate tectonics includes fossils, the same rocks and the shapes of continents that fit together.
Learn more on the continental drift here:
brainly.com/question/394265
#SPJ1
Answer:
The volume of the block is equal to the volume of water displaced by the block.
Explanation:
Volume refers to the amount of space occupied by a given object (in this case the block). When an object such as the block is immersed in water, it displaces its own volume of water. This volume of water displaced is equal to the volume of the block. Hence we can write;
Final Volume of water - Initial Volume of water= Water Displaced = Volume of the block
Recall that the density of a body is given by;
Density= mass/volume
If we obtain the volume of the block by measuring the volume of water displaced by the block, then we weigh the block using a weighing balance, we can obtain the density of the block easily from the relationship shown above.
Answer:
The answer is below
Explanation:
The length of the rope is equal to the radius of the circle formed by the complete rotation of the rope. Therefore the radius = 1.50 m.
a) The distance covered by the rope when completing one rotation is the same as the perimeter of the circle. Hence:
Distance covered in one rotation = 2π * radius = 2π * 1.5 = 3π meters
The velocity of the ball = Distance / time = 3π meters / 3.4 seconds = 2.77 m/s
b) The initial velocity (u) is 0 m/s, the final velocity is 2.77 m/s during time (t) = 3.4 s. Hence acceleration (a):
v = u + at
2.77 = 3.4a
a = 0.82 m/s²
c) Force on ball = mass * acceleration = 4 * 0.82 = 3.28 N