Answer:
8.1 x 10^13 electrons passed through the accelerator over 1.8 hours.
Explanation:
The total charge accumulated in 1.8 hours will be:
Total Charge = I x t = (-2.0 nC/s)(1.8 hrs)(3600 s/ 1 hr)
Total Charge = - 12960 nC = - 12.96 x 10^(-6) C
Since, the charge on one electron is e = - 1.6 x 10^(-19) C
Therefore, no. of electrons will be:
No. of electrons = Total Charge/Charge on one electron
No. of electrons = [- 12.96 x 10^(-6) C]/[- 1.6 x 10^(-19) C]
<u>No. of electrons = 8.1 x 10^13 electrons</u>
Answer: because there is no displacement or movement in the watchman's work. according to science when displacement or movement take place it is said to be work. hope this helps you.
Answer: A.AB
Explanation:
This Velocity vs Time graph shows the acceleration of a body or object, since acceleration is the variation of velocity in time.
As we can see in the attached image, the graph can be divided in four segments:
OA: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a positive slope, hence we are dealing with a positive uniform acceleration.
AB: In this segment the acceleration is changing at a nonuniform rate, since in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be positive. This means the <u>acceleration is nonuniform and positive.</u>
BC: In this segment the acceleration is changing at a nonuniform rate, since in this part it is not possible to calculate the slope. However if this were uniform, the slope woul be negative. This means the acceleration is nonuniform and negative.
CD: In this segment the acceleration is changing at a uniform rate. In addition we can see it has a negative slope, hence we are dealing with a negative uniform acceleration.
From all these segments, the only one that fulfils the nonuniform positive acceleration condition is option A:
Segment AB
Answer:
<em>a. True</em>
<em></em>
Explanation:
I'll assume the question is about magnetic latches and locks.
Magnetic door locks use an electromagnetic force to stop doors from opening, so they are ideal for security. There are two main types of electric locking devices. Locking devices can either be a fail-secure locking device that remains locked when power is lost, or a fail-safe locking device that is unlocked when de-energized. An electromagnetic lock creates a magnetic field when energized or powered up, this causes an electromagnet and armature plate to become attracted to each other strongly enough to keep a door from opening.