1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVEN [57.7K]
3 years ago
11

Infer which group you would expect to contain element 117. Use the periodic table to help you answer this question.

Physics
1 answer:
Gre4nikov [31]3 years ago
6 0

Answer:

halogen group

Explanation:

You might be interested in
Distance from any point on a wave to an identical point on the next wave?
lesantik [10]
It's called the "Wavelength". It corresponds to <span>the distance from any point on a wave to an identical point on the next wave and could also be from crest to crest or trough to trough.

Hope this helps !

Photon</span>
6 0
3 years ago
A world-class sprinter running a 100 m dash was clocked at 5.4 m/s 1.0 s after starting running and at 9.8 m/s 1.5 s later. In w
cupoosta [38]

Answer:

<em>The output power is greater in the interval from 1.0 s to 2.5 s</em>

Explanation:

<u>Physical Power </u>

It measures the amount of work W an object does in certain time t. The formula needed to compute power is

\displaystyle P=\frac{W}{t}

Work can be computed in several ways since we are given the motion conditions, we'll use this formula, for F= applied force, x=distance parallel to F

W=F.x

The second Newton's law gives us the net force as

F=m.a

being m the mass of the object and a the acceleration it has for a given period of time. In our problem, we have two different behaviors for each interval and we must calculate this force since the acceleration is changing. Let's calculate the acceleration in the first interval. We can use the formula for the final speed vf knowing the initial speed vo (which is 0 because the sprinter starts from rest), the acceleration a, and the time t:

v_f=v_o+at

v_f=at

Solving for a

\displaystyle a=\frac{v_f}{t}={5.4}{1}

a=5.4\ m/s^2

The distance traveled in the interval is given by

\displaystyle x=v_o.t+\frac{a.t^2}{2}

Since vo=0

\displaystyle x=\frac{a.t^2}{2}=\frac{5.4(1)^2}{2}

x=2.7\ m

The force is given by

F=m.a

We don't know the value of m, so the force is

F=2.7m

Computing the work done by the sprinter

W=F.x=2.7m(5.4)

W=14.58m

The power is finally computed

\displaystyle P=\frac{W}{t}=\frac{14.58m}{1}

P=14.58m

During the second interval, from t=1 sec to 1.5 sec, the speed changes from 5.4 m/s to 9.8 m/s. This allows us to compute the second acceleration

\displaystyle a=\frac{v_f-v_o}{t}=\frac{9.8-5.4}{0.5}

a=8.8\ m/s^2

The distance is

\displaystyle x=(5.4).(0.5)+\frac{8.8(0.5)^2}{2}

x=3.8\ m

The net force is

F=m(8.8)=8.8m

The work done by the sprinter is now computed as

W=8.8m(3.8)=33.44m

At last, the output power is

\displaystyle P=\frac{33.44m}{0.5}=66.88m

By comparing both results, and being m the same for both parts, we conclude the output power is greater in the interval from 1.0 s to 2.5 s

6 0
3 years ago
Visible light represents a very small portion of the electromagnetic spectrum. Radiation to the left in the image, such as micro
amid [387]
X rays have a higher frequency so A
4 0
3 years ago
Read 2 more answers
A charged particle moves in a circular path in a uniform magnetic field.Which of the following would increase the period of the
Bond [772]

Answer:

Increasing its charge

Increasing the field strength

Explanation:

For a charged particle moving in a circular path in a uniform magnetic field, the centripetal force is provided by the magnetic force, so we can write:

qvB = m\frac{v^2}{r}

where

q is the charge

v is the velocity

B is the magnetic field

m is the mass

r is the radius of the orbit

The period of the motion is

T=\frac{2\pi r}{v}

Re-arranging for r

r=\frac{Tv}{2\pi}

And substituting into the previous equation

qvB = m \frac{Tv^3}{2\pi}

Solving for T,

T=\frac{2\pi q B}{m v^2}

So we see that the period is:

- proportional to the charge and the magnetic field

- inversely proportional to the mass and the square of the speed

So the following will increase the period of the particle's motion:

Increasing its charge

Increasing the field strength

4 0
3 years ago
A spearfisher stands in shallow water and sees a fish a few feet in front of her. She throws her spear directly toward the posit
DENIUS [597]

Answer:

the spear will end up above the fish relative to the actual position of the fish.

Explanation:

due to refraction of light coming from the fish the fish will appear slightly above from its real position

So due to this refraction the spearfisher will throw the spear directly at the image of the fish due to which it will not reach the position of fish but it will reach the position above the fish.

So here we can say that the spear will end up above the fish relative to the actual position of the fish

5 0
4 years ago
Other questions:
  • A model of an atom is shown above. The blue dots represent electrons, and the red dot represents the nucleus. This model accurat
    9·2 answers
  • Problem
    6·1 answer
  • Suppose a mass of 0.500 kg falls from 3050m. What potential energy is associated with the coin when its speed is 30.0 m/s?
    9·1 answer
  • A battery with e.m.f 12v and the internal resistance 0.5ohms is connected to an electric bulb of resistance 2 ohms. Calculate th
    5·1 answer
  • How long would light take to travel from one hill to another
    14·1 answer
  • At what ratio will potassium and sulfur form a binary ionic compound
    15·1 answer
  • What is one layer of bone
    5·2 answers
  • How do solar systems, galaxies, and the universe show different frames of reference about space?
    13·1 answer
  • Leg 1 Swimming
    12·1 answer
  • Give two examples from the fossil record that show evidence of change in the complexity of organisms over time.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!