Answer: Option (c) is the correct answer.
Explanation:
Backbone in a nucleic acids strand is made up of sugar molecules attached with phosphodiester bond.
This sugar-phosphate linkage helps in joining of nucleotides in a DNA sequence. Due to this backbone structural framework of nucleotides is formed. In DNA, the sugar is deoxyribose.
Thus, we can conclude that the backbone in a nucleic acids strand is called sugar backbone.
Answer:
a) Limiting: sulfur. Excess: aluminium.
b) 1.56g Al₂S₃.
c) 0.72g Al
Explanation:
Hello,
In this case, the initial mass of both aluminium and sulfur are missing, therefore, one could assume they are 1.00 g for each one. Thus, by considering the undergoing chemical reaction turns out:

a) Thus, considering the assumed mass (which could be changed based on the one you are given), the limiting reagent is identified as shown below:

Thereby, since there 1.00g of aluminium will consume 0.0554 mol of sulfur but there are just 0.0156 mol available, the limiting reagent is sulfur and the excess reagent is aluminium.
b) By stoichiometry, the produced grams of aluminium sulfide are:

c) The leftover is computed as follows:

NOTE: Remember I assumed the quantities, they could change based on those you are given, so the results might be different, but the procedure is quite the same.
Best regards.
Following laboratory safety protocols such as wearing personal protective equipment will protect John when the accident occurred.
<h3>What are laboratory safety protocols?</h3>
Laboratory safety protocols are the protocols put in place to ensure safety in the laboratory.
Laboratory safety protocols include the following:
- always wear personal protective equipment in the laboratory
- do not play in the laboratory
- do not eat in the laboratory
Following laboratory safety protocols will help protect us from accidents which occur in the laboratory.
What happened when john was carefully pouring a chemical into a beaker when the beaker slips and breaks is an example of laboratory accident.
Wearing personal protective equipment will protect John.
In conclusion, following laboratory safety protocols will protect us when accidents occur in the laboratory.
Learn more about laboratory safety protocols at: brainly.com/question/17994387
#SPJ1
Note that the complete question is given as follows:
John is carefully pouring a chemical into a beaker when the beaker slips and breaks. How would laboratory safety protocols help John?
C. quadruples the rate
<h3>Further explanation</h3>
Given
The rate law :
R=k[A]²
Required
The rate
Solution
There are several factors that influence reaction kinetics :
- 1. Concentration
- 2. Surface area
- 3. Temperature
- 4. Catalyst
- 5. Pressure
- 6. Stirring
The rate is proportional to the concentration.
If the concentration increased, the reaction rate will increase
The reaction is second-order overall(The exponent is 2)
The concentration of A is doubled, the reaction rate will increase :
r = k[A]² ⇒ r= k[2A]²⇒r=4k[A]²
<em>The reaction rate will quadruple.</em>
Answer:
Loses
Explanation:
liquid changes into solid, heat is released. The energy released upon freezing, known as the enthalpy of fusion, is a latent heat, and is exactly the same as the energy required to melt the same amount of the solid.