Answer:
<em>181 °C</em>
<em></em>
Explanation:
Initial pressure
= 100 kPa
Initial temperature
= 30 °C = 30 + 273 K = 303 K
Final pressure
= 1200 kPa
Final temperature
= ?
n = 1.2
For a polytropic process, we use the relationship
(
/
) = (
/
)^γ
where γ = (n-1)/n
γ = (1.2-1)/1.2 = 0.1667
substituting into the equation, we have
(
/303) = (1200/100)^0.1667
/303 = 12^0.1667
/303 = 1.513
= 300 x 1.513 = 453.9 K
==> 453.9 - 273 = 180.9 ≅ <em>181 °C</em>
Answer:

Explanation:
= Gauge pressure = 2.2 atm = 
= Absolute pressure = 
= Local atmospheric pressure
Absolute pressure is given by

The local atmospheric pressure is
.
Answer:
Heater power = 425 watts
Explanation:
Detailed explanation and calculation is shown in the image below
Answer:
The solution for the given problem is done below.
Explanation:
M1 = 2.0
= 0.3636
= 0.5289
= 0.7934
Isentropic Flow Chart: M1 = 2.0 ,
= 1.8
T1 =
(1.8)(288K) = 653.4 K.
In order to choke the flow at the exit (M2=1), the above T0* must be stagnation temperature at the exit.
At the inlet,
T02=
= (1.8)(288K) = 518.4 K.
Q= Cp(T02-T01) =
= 135.7*
J/Kg.