if i renember correctly its b
The tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
<h3>
What is the tension in the cord?</h3>
The tension in the cord is calculated as follows;
T = ma + mg
where;
- a is the acceleration of the block
- g is acceleration due to gravity
- m is mass of the block
T = m(a + g)
T = 1.5(a + 9.8)
T = 1.5a + 14.7
Thus, the tension in the cord is (1.5a + 14.7) N.
If the block is at rest, the tension is 14.7 N.
<h3>Force of the force</h3>
The force with which the cord pulls is equal to the tension in the cord
F = T = m(a + g)
F = (1.5a + 14.7) N
If the block is stationary, a = 0, the tension and force of pull of the cord = 14.7 N.
Thus, the tension in the cord is 14.7 N and the force of pull of the cord is 14.7 N, assuming the block is stationary.
Learn more about tension here: brainly.com/question/187404
#SPJ1
The answer is 2.5 times heavier than on Earth !!
so the answer is C !!
. we need like a picture you something what’re you trying to ask
To solve this problem we must consider the expressions of Stefan Boltzmann's law for which the rate of change of the radiation of energy H from a surface must be

Where
A = Surface area
e = Emissivity that characterizes the emitting properties of the surface
= Universal constant called the Stefan-Boltzmann constant 
T = Absolute temperature
The total heat loss would be then





Therefore the net rate of heat loss from the body by radiation is 155.29J