Answer:
The answer to your question is D An annual weather pattern
Explanation:
Answer:
0.32 m.
Explanation:
To solve this problem, we must recognise that:
1. At the maximum height, the velocity of the ball is zero.
2. When the velocity of the ball is 2.5 m/s above the ground, it is assumed that the potential energy and kinetic energy of the ball are the same.
With the above information in mind, we shall determine the height of the ball when it has a speed of 2.5 m/s. This can be obtained as follow:
Mass (m) = constant
Acceleration due to gravity (g) = 9.8 m/s²
Velocity (v) = 2.5 m/s
Height (h) =?
PE = KE
Recall:
PE = mgh
KE = ½mv²
Thus,
PE = KE
mgh = ½mv²
Cancel m from both side
gh = ½v²
9.8 × h = ½ × 2.5²
9.8 × h = ½ × 6.25
9.8 × h = 3.125
Divide both side by 9.8
h = 3.125 / 9.8
h = 0.32 m
Thus, the height of the ball when it has a speed of 2.5 m/s is 0.32 m.
Answer:
wavelength = speeed / frequency
= 300,000,000 / 2358000
= 300 / 2.358
= 127.2 m
Answer:
When a rope supports the weight of an object that is at rest, the tension in the rope is equal to the weight of the object: T = mg.
Image result for I need help find how much tension is in the string???? And can you explain how you got it after you get the answer plz????
Hence, in such a case the tension will be equal to the centrifugal force.
Formula for tension = centrifugal force = mv2/r.
So the formula of tension will be = centripetal force – force of gravity = mv2/r – mg = m(v2/r-g)
The formula of tension will be = centripetal force + force of gravity = mv2/r + mg = m(v2/r+g)
Explanation:
False because you have moved after you through the apple in the air