1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pshichka [43]
3 years ago
12

A slump is a form of mass wasting that occurs when a coherent mass of loosely consolidated materials or rock layers moves a shor

t distance down a slope. Movement is characterized by sliding along a concave-upward or planar surface.
Physics
1 answer:
coldgirl [10]3 years ago
4 0

Answer:

concave surface!

Explanation: Hope This Helps :)

You might be interested in
A tiger leaps horizontally out of a tree that is 6.00 m high. If he lands 2.00 m from the base of the tree, calculate his initia
Musya8 [376]

Answer:

The initial speed of the tiger is 1.80 m/s

Explanation:

Hi there!

The equation of the position vector of the tiger is the following:

r = (x0 + v0 · t, y0 + 1/2 · g · t²)

Where:

r = position vector at a time t.

x0 = initial horizontal position.

v0 = initial horizontal velocity.

t = time.

y0 = initial vertical position,

g = acceleration due to gravity.

Let´s place the origin of the frame of reference on the ground at the point where the tree is located so that the initial position vector will be:

r0 = (0.00, 6.00) m

We can use the equation of the vertical component of the position vector to obtain the time it takes the tiger to reach the ground.

y = y0 + 1/2 · g · t²

When the tiger reaches the ground, y = 0:

0 = 6.00 m - 1/2 · 9.81 m/s² · t²

2 · (-6.00 m) / -9.81 m/s² = t²

t = 1.11 s

We know that in 1.11 s the tiger travels 2.00 m in the horizontal direction. Then, using the equation of the horizontal component of the position vector we can find the initial speed:

x = x0 + v0 · t

At t = 1.11 s, x = 2.00 m

x0 = 0

2.00 m = v0 · 1.11 s

2.00 m / 1.11 s = v0

v0 = 1.80 m/s

The initial speed of the tiger is 1.80 m/s

4 0
3 years ago
Ceres is a dwarf planet located in the main asteroid belt.
Pie
Yes that is correct, it <span>lies between the orbits of Mars and Jupiter and is the largest in the belt.

</span>
5 0
3 years ago
Two long, straight wires are parallel and 26 cm apart.
mezya [45]

Answer: 2.49×10^-3 N/m

Explanation: The force per unit length that two wires exerts on each other is defined by the formula below

F/L = (u×i1×i2) / (2πr)

Where F/L = force per meter

u = permeability of free space = 1.256×10^-6 mkg/s^2A^2

i1 = current on first wire = 57A

i2 = current on second wire = 57 A

r = distance between both wires = 26cm = 0.26m

By substituting the parameters, we have that

Force per meter = (1.256×10^-6×57×57)/ 2×3.142 ×0.26

= 4080.744×10^-6/ 1.634

= 4.080×10^-3 / 1.634

= 2.49×10^-3 N/m

5 0
3 years ago
In hydrogen, the transition from level 2 to level 1 has a rest wavelength of 121.6 nm.1).Find the speed for a star in which this
soldier1979 [14.2K]

Answer:

1). v = - 2960526m/s

2). Toward us

3). v = - 493421m/s

4). Toward us

5). v = 1480263m/s

6).  Away from us

7). v = 3207236m/s

8). Away from us

Explanation:

Spectral lines will be shifted to the blue part of the spectrum if the source of the observed light is moving toward the observer, or to the red part of the spectrum when it is moving away from the observer (that is known as the Doppler effect).

The wavelength at rest is 121.6 nm (\lambda_{0} = 121.6nm)

Redshift: \lambda_{measured} > \lambda_{0}

Blueshift: \lambda_{measured} < \lambda_{0}

Then, for this particular case it is gotten:

Star 1: \lambda_{measured} = 120.4nm

Star 2: \lambda_{measured} = 121.4nm

Star 3: \lambda_{measured} = 122.2nm

Star 4: \lambda_{measured} = 122.9nm

Star 1:

Blueshift: 120.4nm < 121.6nm

Toward us

Star 2:

Blueshift: 121.4nm < 121.6nm

Toward us

Star 3:

Redshift: 122.2nm > 121.6nm

Away from us

Star 4:

Redshift: 122.9nm > 121.6nm

Away from us

Due to that shift the velocity of the star can be determine by means of Doppler velocity.

v = c\frac{\Delta \lambda}{\lambda_{0}}  (1)

Where \Delta \lambda is the wavelength shift, \lambda_{0} is the wavelength at rest, v is the velocity of the source and c is the speed of light.

v = c(\frac{\lambda_{measured}- \lambda_{0}}{\lambda_{0}}) (2)

<em>Case for star 1 \lambda_{measured} = 120.4 nm:</em>

<em></em>

v = (3x10^{8}m/s)(\frac{120.4nm-121.6nm}{121.6nm})

v = - 2960526m/s

Notice that the negative velocity means that is approaching to the observer.

<em>Case for star 2 \lambda_{measured} = 121.4 nm:</em>

v = (3x10^{8}m/s)(\frac{121.4nm-121.6nm}{121.6nm})

v = - 493421m/s

<em>Case for star 3 \lambda_{measured} = 122.2 nm:</em>

v = (3x10^{8}m/s)(\frac{122.2nm-121.6nm}{121.6nm})

v = 1480263m/s

<em>Case for star 4 \lambda_{measured} = 122.9 nm:</em>

v = (3x10^{8}m/s)(\frac{122.9nm-121.6nm}{121.6nm})

v = 3207236m/s

4 0
3 years ago
A person walks 40. m east, then 20. m west. He then
Angelina_Jolie [31]

Answer:

ok

Explanation:

3 0
3 years ago
Other questions:
  • How many miles long is burma from north to south?
    6·1 answer
  • Which one of the following statements concerning the electric dipole moment is false?
    11·1 answer
  • A 20.0-kg block is initially at rest on a horizontal surface. A horizontal force of 77.0 N is required to set the block in motio
    6·1 answer
  • The density of a substance equals its mass
    14·1 answer
  • Is a pair of sneakers a want or a need? Is the most expensive pair of sneakers a want or a need?
    5·1 answer
  • Who's Madame Marie curie?​
    11·1 answer
  • A racecar driver steps on the gas, and his racecar travels 20 meters in 2 seconds starting from rest. The acceleration of the ra
    8·1 answer
  • 04 What is the pressure 40m under the sea if sea water has a density of 1100kg/m3? (atmospheric pressure is 101kPa)
    14·1 answer
  • Which equation can be used to calculate the normal force on an object if you know the speed of the object, the coefficient of ki
    8·1 answer
  • While buying a hot plate you notice the resistance of the hot
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!