This question is describing the following chemical reaction at equilibrium:

And provides the relative amounts of both A and B at 25 °C and 75 °C, this means the equilibrium expressions and equilibrium constants can be written as:

Thus, by recalling the Van't Hoff's equation, we can write:

Hence, we solve for the enthalpy change as follows:

Finally, we plug in the numbers to obtain:
![\Delta H=\frac{-8.314\frac{J}{mol*K} *ln(0.25/9)}{[\frac{1}{(75+273.15)K} -\frac{1}{(25+273.15)K} ] } \\\\\\\Delta H=4,785.1\frac{J}{mol}](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Cfrac%7B-8.314%5Cfrac%7BJ%7D%7Bmol%2AK%7D%20%2Aln%280.25%2F9%29%7D%7B%5B%5Cfrac%7B1%7D%7B%2875%2B273.15%29K%7D%20-%5Cfrac%7B1%7D%7B%2825%2B273.15%29K%7D%20%5D%20%7D%20%5C%5C%5C%5C%5C%5C%5CDelta%20H%3D4%2C785.1%5Cfrac%7BJ%7D%7Bmol%7D)
Learn more:
<span>Physical change, heat caused this.
Water molecules that only vibrate are in solid form. If heat energy is added, the molecules will speed up their vibrations until they can break loose from the organized pattern of a solid and begin to slide over each other, changing to liquid state. If more heat energy is added, the molecules will speed up more and move randomly in all directions as a gas/vapor. Removing heat energy will reverse these changes.
</span>
B and temp is related to kinetic energy by how they both effect the speed of the particles. If the temp is hot the particles speed up and if cold the particles slow down
Barium carbonate (BaCO₃) <span>will be more soluble in acidic solution than in pure water, because Ksp (solubility constant) in water for this salt is very low.
In acid (for example hydrochloric acid) barium carbonate dissolves more because it forms weak electrolyte carbonic acid:
BaCO</span>₃(s) + 2HCl(aq) → BaCl₂(aq) + H₂CO₃(aq).
The least reactive metal is lead, since it reacted with none of the salt solutions.