The given question is incomplete. The complete question is:
A chemist prepares a solution of barium chloride by measuring out 110 g of barium chloride into a 440 ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in mole per liter of the chemist's barium chloride solution. Round your answer to 3 significant digits.
Answer: Concentration of the chemist's barium chloride solution is 1.20 mol/L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in L
moles of
(solute) = 
Now put all the given values in the formula of molality, we get

Therefore, the molarity of solution is 1.20 mol/L
Hey there!
The answer to this question would most likely be the 3rd choice, (option C)
Increasing the pressure on a gas decreases the volume
Good luck on your assignment and enjoy your day!
~
The true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
<h3>What is true about the given reaction?</h3>
The given reaction shows a reaction between A and B to form CD
The reaction is a reversible reaction.
A reversible reaction is a reaction which can proceed in either of two ways where the reactants can react to form the product and also the products an break down to form the reactants.
In the reaction given, as the concentration of A and b decreases, the concentration of CD increases and vice versa.
At equilibrium, the rate of formation of CD is equal to the the rate of decomposition of CD.
Therefore, the true statement is that after reaching equilibrium, the rate of forming products and reactants is the same.
In conclusion, a reaction at equilibrium has the forward and backward reactions occurring at the sane rate.
Learn more about equilibrium reaction at: brainly.com/question/18849238
#SPJ1
KE = 0
<h3>Further explanation </h3>
Energy is the ability to do work
Energy because its motion is expressed as Kinetic energy (KE) which can be formulated as:

So for two objects that have the same speed, the greater the mass of the object, the greater the kinetic energy
The stone in hand is in a motionless state (at rest) so that its velocity (v) = 0, so it has no kinetic energy
But this stone can have <em>potential energy that is gained due to its height</em>
Answer:
dna or diabeties can be separated