I believe the correct answer from the choices listed above is the third option. Water is necessary for living organisms because all <span>organisms need water to transport chemicals into their cells. Hope this answers the question. Have a nice day.</span>
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.
767.448 Joules of heat is required.
You use the equation Q=MCdeltaT
Make sure you convery celsius to Kelvin
Specific heat of water is 4.18
So it will be Q=2.55(4.18)(72)
Q=767.448
For a reaction system at equilibrium, LeChatelier's principle can be used to predict the "effect of a stress on the system".
<u>Option: C</u>
<u>Explanation:</u>
Le Chatelier's theory can be implemented to forecast a system's behavior due to variations in pressure, temperature, or concentration that will lead in predictable and contested variations in the system adjustments to establish a new state of equilibrium. This means that adding heat to a process would favor the endothermic path of a reaction, because this decreases the amount of heat generated in the system.
Here shift in equilibrium take place when volume increase, the total pressure decreases, which have potential to reverse the reaction, while on increasing pressure of system, the total volume decreases of the gaseous system, which can shift an equilibrium in the direction of the fewer molecules.
Answer:
An example of engineering material, <em><u>are plastics,</u></em> they are derived from organic, natural materials, such as cellulose, coal, natural gas, salt and, of course, oil. Oil is a complex mixture of thousands of compounds and must be processed before being used.
Explanation:
Plastic production begins with distillation at a refinery, where crude oil is separated into groups of lighter components, called fractions. Each fraction is a mixture of hydrocarbon chains (chemical compounds formed by carbon and hydrogen) that differ in terms of the size and structure of their molecules. One of those fractions, naphtha, is the essential compound for the production of plastic.
Two main processes are used to make plastic: polymerization and polycondensation, and both require specific catalysts. In a polymerization reactor, monomers like ethylene and propylene join to form long polymer chains. Each polymer has its own properties, structure and dimensions depending on the type of basic monomer that has been used.