Answer:

Explanation:
Hello,
In this case, given the balanced reaction:

We can see a 2:4 mole ration between permanganate ion (118.9 g/mol) and manganese (IV) oxide (86.9 g/mol), that is why the resulting mas of this last one turns out:

Best regards.
Answer:
The rate of disappearance of C₂H₆O = 2.46 mol/min
Explanation:
The equation of the reaction is given below:
2 K₂Cr₂O₇ + 8 H₂SO₄ + 3 C₂H₆O → 2 Cr₂(SO₄)₃ + 2 K₂SO₄ + 11 H₂O
From the equation of the reaction, 3 moles of C₂H₆O is used when 2 moles of Cr₂(SO₄)₃ are produced, therefore, the mole ratio of C₂H₆O to Cr₂(SO₄)₃ is 3:2.
The rate of appearance of Cr₂(SO₄)₃ in that particular moment is given 1.64 mol/min. This would than means that C₂H₆O must be used up at a rate which is approximately equal to their mole ratios. Thus, the rate of of the disappearance of C₂H₆O can be calculated from the mole ratio of Cr₂(SO₄)₃ and C₂H₆O.
Rate of disappearance of C₂H₆O = 1.64 mol/min of Cr₂(SO₄)₃ * 3 moles of C₂H₆O / 2 moles of Cr₂(SO₄)₃
Rate of disappearance of C₂H₆O = 2.46 mol/min of C₂H₆O
Therefore, the rate of disappearance of C₂H₆O = 2.46 mol/min
Answer:
In the reaction between p-aminophenol and acetic anhydride to form acetaminophen, 4.5 ml of water were added. This was done to recover the product out the container. Water was used as a means of carrying out the product out the container. However, it should be noted that we would want a small amount to be added in order to avoid the product dissolving onto it.
Explanation:
The complete table is inserted.
A table is given,
Formulas used:
pH= -log(H⁺)
pOH= -log(OH⁻)
pH+ pOH=14
Calculations:
For A: (H⁺)=2×10⁻⁸M
Using the pH formula:
pH= -log(H⁺)=-log(2×10⁻⁸)=7.69
pOH=14 - 7.69=6.3
Calculating OH concentration,
pOH= -log(OH⁻)
6.3= -log(OH⁻)
(OH⁻)=5.011×10⁻⁷M
Hence, the nature of A is basic.
Similarily,
For B,
(OH⁻)=1×10⁻⁷
Using the pH formula:
pOH= -log(OH⁻)= -log(1×10⁻⁷)=7
pH=14-7=7
Calculating H concentration,
pH= -log(H⁺)
7= -log(H⁺)
(H⁺)=1×10⁻⁷M
Hence, the nature of B is neutral.
Similarily,
For C,
pH=12.3
Using the pH formula:
pOH=14-12.3=1.7
Calculating H concentration,
pH= -log(H⁺)
12.3= -log(H⁺)
(H⁺)=5.011×10⁻¹³M
Calculating OH concentration,
pOH= -log(OH⁻)
1.7= -log(OH⁻)
(OH⁻)=1.99×10⁻²M
Hence, the nature of C is Basic.
Similarily,
For D,
pOH=6.8
Using the pH formula:
pH=14-6.8=7.2
Calculating H concentration,
pH= -log(H⁺)
7.2= -log(H⁺)
(H⁺)=6.309×10⁻⁸M
Calculating OH concentration,
pOH= -log(OH⁻)
6.8= -log(OH⁻)
(OH⁻)=1.58×10⁻⁷M
Hence, the nature of D is basic.
Learn more about the acid and bases here:
brainly.com/question/16189013
#SPJ10