Answer:
(a) I⁻ (charge 1-)
(b) Sr²⁺ (charge 2+)
(c) K⁺ (charge 1+)
(d) N³⁻ (charge 3-)
(e) S²⁻ (charge 2-)
(f) In³⁺ (charge 3+)
Explanation:
To predict the charge on a monoatomic ion we need to consider the octet rule: atoms will gain, lose or share electrons to complete their valence shell with 8 electrons.
(a) |
I has 7 valence electrons so it gains 1 electron to form I⁻ (charge 1-).
(b) Sr
Sr has 2 valence electrons so it loses 2 electrons to form Sr²⁺ (charge 2+).
(c) K
K has 1 valence electron so it loses 1 electron to form K⁺ (charge 1+).
(d) N
N has 5 valence electrons so it gains 3 electrons to form N³⁻ (charge 3-).
(e) S
S has 6 valence electrons so it gains 2 electrons to form S²⁻ (charge 2-).
(f) In
In has 3 valence electrons so it loses 3 electrons to form In³⁺ (charge 3+).
Answer:
Take approx 41.7 mL of 12-M HCl in a 1.00-L flask and fill the rest of the volume with distilled water.
Explanation:
Hello,
In this case, for the dilution process from concentrated 12-M hydrochloric acid to 1.00 L of the diluted 0.50M hydrochloric acid, the volume of concentrated HCl you must take is computed by considering that the moles remain constant for all dilution processes as shown below:

Which can also be written in terms of concentrations and volumes:

Thus, solving for the initial volume or aliquot that must be taken from the 12-M HCl, we obtain:

It means that you must take approx 41.7 mL of 12-M HCl in a 1.00-L flask and fill the rest of the volume with distilled water for such preparation.
Best regards.
<span>The molecular mass of sodium oxide (Na2O) is A. 61.97894. The molecular mass of a molecule (Mr) is the sum of atomic masses of its atoms (Ar). The molecular mass of sodium oxide is: Mr(Na2O) = 2 * Ar (Na) + Ar(O). From the periodic table, Ar(Na) = 22.989769 and Ar(O) = 15.9994. The molecular mass of sodium oxide is: Mr(Na2O) = 2 * 22.989769 + 15.9994 = 45.979538 + 15.9994 = 61.97894.</span>
Answer:
The answer to your question is:
Explanation:
See the attachment