1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
14

A 10-kilogram mass is sliding along a frictionless floor with an acceleration of 5 meters per second squared. What is the magnit

ude of the net force acting on the mass?
Physics
1 answer:
Darina [25.2K]3 years ago
5 0

Answer:

50N

Explanation:

Since the floor is frictionless, the net force = mass × acceleration.

given that,

mass = 10kg

and acceleration is 5 m/s²

Thus,

Force = 10 × 5

Force = 50 N

You might be interested in
On the earth, when an astronaut throws a 0.250-kg stone vertically upward, it returns to his hand a time T later. On planet X he
Liula [17]

Answer:

correct is d) a ’= g / 2

Explanation:

For this exercise let's use the kinematics equations

On earth

      v = v₀ - a t

     a = (v₀- v) / T

On planet X

    v = v₀ - a' t’

    a ’= (v₀-v) / 2T

Let's substitute the land values ​​in plot X

     a’= a / 2

Now let's use Newton's second law

       W = ma

      m g = m a

      a = g

We substitute

      a ’= g / 2

So we see that on planet X the acceleration is half the acceleration of Earth's gravity

4 0
3 years ago
Sir wants to see if a new shower cleaner works better in removing soap dirt than his old cleaner.  He uses the new cleaner on on
sergeinik [125]
The independent variable in this problem would be the different types of shower cleaner. The dependent variable would be the shower tiles.
8 0
3 years ago
Which was not a cause of the Spanish-American War in 1898?
diamong [38]
(d) President McKinley did not want war.
7 0
4 years ago
Read 2 more answers
To understand how to find the velocities of objects after a collision.
trasher [3.6K]

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

5 0
4 years ago
What does force change?
Nonamiya [84]
A force is a push or pull to an object
4 0
4 years ago
Other questions:
  • Calculate using coulombs: an object has 6 protons and 8 electrons. Calculate the magnitude of the charge of the objects. Thank y
    9·1 answer
  • If a radio wave has a period of 1 μs what is the wave's period in seconds
    14·1 answer
  • Two identical cars, one on the moon and one on earth, are rounding banked curves at the same speed with the same radius and the
    6·1 answer
  • Which step is usually NOT performed when finding a pulse?
    12·2 answers
  • In 11.8 s, 151 bullets strike and embed themselves in a wall. The bullets strike the wall perpendicularly. Each bullet has a mas
    12·1 answer
  • If two objects are the
    5·1 answer
  • A block of mass 0.260 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that th
    6·1 answer
  • 11. 2 cm of rain falls in 10 minutes. The rain fall
    8·1 answer
  • A car drives straight down toward the bottom of a valley and up the other side on a road whose bottom has a radius of curvature
    14·1 answer
  • You might have noticed that a feather falls slowly toward the ground, while a ball falls rapidly. Which statement correctly expl
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!