To find
we need to use vector addition and use the x and y components. First we subtract vector 2 from vector 5 which results in a vector with a length of 3 pointing directly east, then we use the distance formula to find the length of the net force
which gives
. We now have a magnitude but we also need a direction, since vector 4 and vector 5 are perpendicular. Using
where tan^-1(y/x) we get an angle of 53 degrees. The resultant force vector is 5 distance with an angle of 53 degrees north east.
Unscrambling
1. resting heart rate
2. overload
3. workout
4. specificity
5. cool-down
6. progression
7. warm-up
8. the last one can only be instance, but there was a typo on the paper.
When the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
<h3>
Frictional force between the block and the horizontal surface</h3>
The frictional force between the block and the horizontal surface is determined by applying Newton's law;
∑F = ma
F - Ff = ma
Ff = F - ma
Ff = 4 - 2(1.2)
Ff = 4 - 2.4
Ff = 1.6 N
When the applied force increases to 5 N, the magnitude of the block's acceleration is calculated as follows;
F - Ff = ma
5 - 1.6 = 2a
3.4 = 2a
a = 3.4/2
a = 1.7 m/s²
Thus, when the applied force increases to 5 N, the magnitude of the block's acceleration is 1.7 m/s².
Learn more about frictional force here: brainly.com/question/4618599
Answer:

Explanation:
From the question we are told that:
Crane Length 
Crane Mass 
Arm extension at lifting end 
Arm extension at counter weight end 
Load 
Generally the equation for Torque Balance is mathematically given by


