The relationship between frequency and wavelength for an electromagnetic wave is

where
f is the frequency

is the wavelength

is the speed of light.
For the light in our problem, the frequency is

, so its wavelength is (re-arranging the previous formula)
A force of 43.8 N is required to stretch the spring a distance of 15.5 cm = 0.155 m, so the spring constant <em>k</em> is
43.8 N = <em>k</em> (0.155 m) ==> <em>k</em> = (43.8 N) / (0.155 m) ≈ 283 N/m
The total work done on the spring to stretch it to 15.5 cm from equilibrium is
1/2 (283 N/m) (0.155 m)² ≈ 3.39 J
The total work needed to stretch the spring to 15.5 cm + 10.4 cm = 25.9 cm = 0.259 m from equilibrium would be
1/2 (283 N/m) (0.259 m)² ≈ 9.48 J
Then the additional work needed to stretch the spring 10.4 cm further is the difference, about 6.08 J.
Answer:
it is the physics that explains how everything works. The best description we have of the. nature of the particles that make up matters and the forces with which they interact. It underlines how atoms work, and so why chemistry and biology work as they do
Answer:
12.25 meters
Explanation:
s=1/2(v+u)t
s= displacement
v= final velocity
u= initial velocity
t= time
7m/s+0m/s divide by 2= 3.5 m/s velocity Times 3.5 seconds= 12.25 meters
Answer:
Let's investigate the case where the cable breaks.
Conservation of angular momentum can be used to find the speed.

The projectile embeds itself to the ball, so they can be treated as a combined object. <u>The moment of inertia of the combined object is equal to the sum of the moment of inertia of both objects. </u>

where r is the length of the cable.
<u>After the collision, the ball and the projectile makes a circular motion because of the cable.</u> So, the force (tension) in circular motion is

The relation between linear velocity and the angular velocity is

So,

As can be seen, the maximum velocity for the projectile without breaking the cable is
, where r is the length of the cable.