Answer:
To make it into the pool you must run and jump at

Explanation:
Horizontal Launch
When an object is thrown with a specified initial speed in the horizontal direction, it describes a curved path that finishes when it hits the ground level after traveling certain horizontal distance x and a vertical height y from the launching point. The horizontal speed is always constant and the vertical speed increases due to the effect of gravity. It can be found that the horizontal distance reached by the object when launched at an initial speed in a given time t is

And the vertical distance is

If t is the total flight time, then x and y are maximum and we can find a relation between them. Solving for t in the first equation

Substituting in the second equation

Rearranging

Solving for 

There are many applications for the horizontal launch. One common situation is when someone wants to drop something on certain terrain at a specific approximate point when traveling in a plane at a given height. Once the object is left fall, it has the same speed as the plane, so the plane speed can be estimated to make the best possible launch, or given that speed, we can know in advance where the object will reach ground level
On the off chance that a 2.45 GHz microwave flag is by one means or another radiating from your microwave oven, that is exceptionally perilous and you ought to have it settled or supplanted promptly. A 1000 Watt microwave oven radiating energy into the nearby environment can, contingent upon conditions, make you lose awareness in around 12 to 15 minutes of presentation at a separation of around 10 feet.
By using Lami's theorem, Mass m = 1.75 kg approximately
Given that a strong weightless rope has a mass, m, hanging from the middle of it. If the tension force on each rope is 25 N, and the rope droops at an angle of 20.0 degrees to the horizontal.
By using Lami's theorem, we can get how much mass is hanging from the rope.
Let the angle between the rope = α = 180 - 40
α = 140 degrees
The angle between one of the rope and mass = β = 20 + 90
β = 110 degrees
The angle between the mass and the other rope = γ = 360 - (140 + 110)
γ = 360 - 250
γ = 110 degrees
W/ sinα = T/ sinβ = T/sinγ
W/ sinα = T/ sinβ
Substitute all the necessary parameters
W/sin140 = 25/sin 110
W / 0.643 = 25 / 0.939
W = 17.1 N
Weight W = mg
17.1 = 9.8m
mass m = 17.1/9.8
Mass m = 1.7455 kg
Mass m = 1.75 kg approximately
Therefore, 1.75 kg mass is hanging from the rope.
Learn more about resolution of forces here: brainly.com/question/1858958
Answer:
1. C
2. A
3. E
4. B
5. D
Explanation:
I feel like I'm right but I may be wrong