Answer:
Groups show similar chemical properties about the elements
Explanation:
The periodic table is divided into groups and periods. Groups are vertical while periods are horizontal.
All elements in the same group possess the same number of outermost shell electrons. This number of outermost shell electrons controls the reactivity of the elements in the group.
Hence, groups show similar chemical properties of the elements in them, Groups separate elements into families which assist in the speedy study of elements.
Answer: I don’t know lol
Explanation: I am so sorry I thought this was easy
<h3>Answer:</h3>
a) Moles of Caffeine = 1.0 × 10⁻⁴ mol
b) Moles of Ethanol = 4.5 × 10⁻³ mol
<h3>Solution:</h3>
Data Given:
Mass of Caffeine = 20 mg = 0.02 g
M.Mass of Caffeine = 194.19 g.mol⁻¹
Molecules of Ethanol = 2.72 × 10²¹
Calculate Moles of Caffeine as,
Moles = Mass ÷ M.Mass
Putting values,
Moles = 0.02 g ÷ 194.19 g.mol⁻¹
Moles = 1.0 × 10⁻⁴ mol
Calculate Moles of Ethanol as,
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Particles and Avogadro's Number is given as,
Number of Moles = Number of Molecules ÷ 6.022 × 10²³
Putting values,
Number of Moles = 2.72 × 10²¹ Molecules ÷ 6.022 × 10²³
Number of Moles = 4.5 × 10⁻³ Moles
Missing data in your question: (please check the attached photo)
from this balanced equation:
M(OH)2(s) ↔ M2+(aq) + 2OH-(aq) and when we have Ksp = 2x10^-16
∴Ksp = [M2+][OH]^2
2x10^-16 = [M2+][OH]^2
a) SO at PH = 7 ∴POH = 14-PH = 14- 7 = 7
when POH = -㏒[OH]
7= -㏒[OH]
∴[OH] = 1x10^-7 m by substitution with this value in the Ksp formula,
∴[M2+] =Ksp /[OH]^2
= (2x10^-16)/(1x10^-7)^2
= 0.02 M
b) at PH =10when POH = 14- PH = 14-10 = 4
when POH = -㏒[OH-]
4 = -㏒[OH-]
∴[OH] = 1x10^-4 ,by substitution with this value in the Ksp formula
[M2+] = Ksp/ [OH]^2
= 2x10^-16 / (1x10^-4)^2
= 2x10^-8 Mc) at PH= 14
when POH = 14-PH
= 14 - 14
= 0
when POH = -㏒[OH]
0 = - ㏒[OH]
∴[OH] = 1 m
by substitution with this value in Ksp formula :
[M2+] = Ksp / [OH]^2
= (2x10^-16) / 1^2
= 2x10^-16 M
C. An atom of helium has its valence electrons in its first energy level, it wouldn't and can't satisfy the Octet rule as it only has 2 electrons, but with 2, it has a full shell, as the first energy level can hold only 2 electrons.