Answer:

Explanation:
We'll use the momentum equation:

where:
p = momentum
m = mass
v = velocity
Since we're doing the magnitude of momentum of the system, we'll add the mass of the cyclist and the mountain bike together:

Given that, we can now substitute our given values into the momentum equation:

Our final answer is:

Answer:
<h2>
work done= 48.96 kJ</h2>
Explanation:
Given data
mass of load m= 425 kg
height/distance h=64 m
acceleration a= 1.8 m/s^2
The work done can be calculated using the expression
work done= force* distance
but force= mass *acceleration
hence work done= 425*1.8*64= 48,960 J
work done= 48.96 kJ
Answer:
C) Inversely to its volume
Explanation:
As the volume decreases (Container gets smaller) the pressure increases. Conversely, If the volume increases (Container gets larger) the pressure decreases.
Force of Gravity depends on:
1) Masses of the object
2) Distance between the object
Hope this helps!
List out all the variables that you do know;
acceleration=-9.8 ms⁻¹ (this remains constant on Earth)
Final velocity=?
Displacement (s)= -2.1 m
Initial Velocity(u)=2.5 ms⁻¹
v²=u²+2as
v²=(2.5)²+2(-9.8)(-2.1)
v²=47.41
v=√47.41
v=6.88549 ≈ 6.9 ms⁻¹
Hope I helped :)