They size of the wave and the time of a certain wave.
Answer:
Pressure applied to the needle is 7528 Pa
Explanation:
As we know by poiseuille's law of flow of liquid through a cylindrical pipe
the rate of flow through the pipe is given as

now we know that

radius = 0.2 mm
Length = 6.32 cm

now we have



now we have


Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>