Answer:
The maximum length during the motion is 
Explanation:
From the question we are told that
The mass is 
The vertical spring length is 
The unstretched length is 
The initial speed is 
The new length of the spring 
The spring constant k is mathematically represented as

Where F is the force applied 
y is the difference in weight which is 
The negative sign is because the displacement of the spring (i.e its extension occurs against the force F)
Now substituting values accordingly


The elastic potential energy is given as 
where D is this the is the displacement
Since Energy is conserved the total elastic potential energy would be

Substituting value accordingly




So to obtain total length we would add the unstretched length
So we have

Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9
Answer:This also means that Mercury's surface gravity is 3.7 m/s2, which is the equivalent of 38% of Earth's gravity (0.38 g). This means that if you weighed 100 kg (220 lbs) on Earth, you would weigh 38 kg (84 lbs) on Mercury.
Explanation:
A) Up is the direction of the magnetic field at point Z.