Answer:
10 km/hr/s
Explanation:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the car in this problem:
u = 0

t = 6 s
Substituting in the equation,

For this problem, we use the derived equations for rectilinear motion at constant acceleration. The equations used for this problem are:
a = (v - v₀)/t
2ax = v² - v₀²
where
a is the acceleration
x is the distance
v is the final velocity
v₀ is the initial velocity
t is the time
The solution is as follows;
a = (60mph - 30 mph)/(3 s * 1 h/3600 s)
a = 36,000 mph²
2(36,000 mph²)(x) = 60² - 30²
Solving for x,
x = 0.0375 miles
Answer:
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Newton's third law states that if an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
Answer:
70.5 mph
Explanation:
A passenger jet travels from Los Angeles to Bombay, India, in 22h.
The return flight takes 17 h.
The difference in flight times is caused by winds over the Pacific Ocean that
blow primarily from west to east.
If the jet's average speed in still air is 550 mi/h what is the average speed
of the wind during the round trip flight? Round to the nearest mile per hour.
Is your answer reasonable?
:
Let w = speed of the wind
:
Write a distance equation (dist is the same both ways
17(550+w) = 22(550-w)
9350 + 17w = 12100 - 22w
17w + 22w = 12100 - 9350
39w = 2750
W = 2750/39
w = 70.5 mph seems very reasonable
:
Confirming if the solution by finding the distances using these value
17(550+70.5) = 10549 mi
22(550-70.5) = 10549 mi; confirms our solution of w = 70.5 mph