1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scoray [572]
2 years ago
10

A fireboat is to fight fires at coastal areas by drawing seawater with a density of 1030 kg/m3 through a 10-cm-diameter pipe at

a rate of 0.04 m3/s and discharging it through a hose nozzle with an exit diameter of 5 cm. The total irreversible head loss of the system is 3 m, and the position of the nozzle is 3 m above sea level. For a pump efficiency of 70 percent, determine the required shaft power input to the pump and the water discharge velocity.
Physics
1 answer:
GaryK [48]2 years ago
5 0

Answer:

50.93 m/s

199.5 kW

Explanation:

From the question, the nozzle exit diameter = 5 cm, Radius= diameter/2= 5cm/2= 2.5cm. we can convert it to metre for unit consistency= (2.5×0.01)=

0.025m

We can calculate the The cross sectional area of the nozzle as

A= πr^2

A= π ×0.025^2

= 1.9635 ×10^- ³ m²

From the question, the water is moving through the pipe at a rate of 0.1 m /s , then for the water to move through it at a seconds, it must move at

(0.1 / 1.9635 ×10^- ³ m²)

= 50.93 m/s

During the Operation of the pump, the Dynamic energy of the water= potential energy provided there is no loss during the Operation

mgh = 1/2mv²

We can make "h" subject of the formula, which is the height of required head of water

h = (1/2mv²)/mg

h= v² / 2g

h = 50.93² / (2 ×9.81)

h = 132.21m

From the question;

The total irreversible head loss of the system = 3 m,

the given position of nozzle = 3 m

the total head the pump needed=(The total irreversible head loss of the system + the position of the nozzle + required head of water )

=(3 + 3 + 132.21m)

=138.21m

mass of water pumped in a seconds can be calculated since we know that mass is a product of volume and density

Volume= 0.1m³

Density of sea water=1030 kg/m

(0.1 m^3× 1030)

= 103kg

We can calculate the Potential enegry, which is = mgh

= (103 ×9.81 × 138.21)

= 139651.5 Watts

= 139.65kW

To determine required shaft power input to the pump and the water discharge velocity

Energy= efficiency × power

But we are given efficiency of 70 percent, then

139651.5 Watts = 0.7P

=199502.18 Watts

P=199.5 kW

Therefore, the required shaft power input to the pump and the water discharge velocity is 199.5 kW

You might be interested in
I got part c right but idk why the other parts are wrong HELP!
dedylja [7]

a) The impulse is 76.5 Ns

b) The average force is 546.4 N

c) The final speed is 31.5 m/s

Explanation:

a)

The impulse exerted on an object is defined as

J=\int F\Delta t

where

F is the magnitude of the force exerted on the object

\Delta t is the time interval during which the force is applied

If we consider a graph of the force applied vs time, it follows that the impulse exerted is equal to the area under the graph.

Therefore, in this problem, we can calculate the impulse by computing the area under the graph. We have a trapezium, whose bases are

B=0.14-0 = 0.14s\\b=8-5=3s

and whose height is

h=900 N

Therefore, the area (and the impulse) is

J=\frac{(B+b)h}{2}=\frac{(0.14+0.03)(900)}{2}=76.5 Ns

b)

In this problem, the force applied is not constant. However, we can rewrite the impulse also as

J=F_{avg} \Delta t

where

F_{avg} is the average force exerted during the whole time \Delta t

In this problem we have

J = 76.5 Ns is the impulse (calculated in part a)

\Delta t = 0.14 s is the time interval

Solving for the average force, we find

\Delta t = \frac{J}{F_{avg}}=\frac{76.5}{0.14}=546.4 N

c)

According to the impulse theorem, the impulse exerted on an object is equal to the change in momentum of the object:

J=\Delta p = m(v-u)

where

m is the mass of the object

v is the final velocity

u is the initial velocity

In this problem, we have

J = 76.5 Ns

m = 3.0 kg is the mass

u = 6.0 m/s is the initial velocity

Solving for v, we find the final velocity (and speed):

v=u+\frac{J}{m}=6.0+\frac{76.5}{3}=31.5 m/s

Learn more about impulse and momentum:

brainly.com/question/9484203

#LearnwithBrainly

6 0
3 years ago
Answer these multiple choice questions!!! 20 points!!!
irga5000 [103]
I need pictures or something
7 0
2 years ago
Read 2 more answers
A force of 150 N is used to push a motorcycle 10 m along a road in 20 s.
Grace [21]

Answer:

beuhhhhhhhghhhhhhhhhhh

7 0
2 years ago
Help plssssssssssss
grin007 [14]
C. A little backward, 100 or 110 degrees
6 0
3 years ago
When the displacement in SHM is equal to 1/3 of the amplitude xm, what fraction of the total energy is (a) kinetic energy and (b
Nesterboy [21]

Answer:

Explanation:

Given

Displacement is \frac{1}{3} of Amplitude

i.e. x=\frac{A}{3} , where A is maximum amplitude

Potential Energy is given by

U=\frac{1}{2}kx^2

U=\frac{1}{2}k(\frac{A}{3})^2

U=\frac{1}{18}kA^2

Total Energy of SHM is given by

T.E.=\frac{1}{2}kA^2

Total Energy=kinetic Energy+Potential Energy

K.E.=\frac{1}{2}kA^2 -\frac{1}{18}kA^2

K.E.=\frac{8}{18}kA^2

Potential Energy is \frac{1}{8} th of Total Energy

Kinetic Energy is \frac{8}{9} of Total Energy

(c)Kinetic Energy is 0.5\times \frac{1}{2}kA^2

P.E.=\frac{1}{4}kA^2

\frac{1}{2}kx^2=\frac{1}{4}kA^2

x=\frac{A}{\sqrt{2}}                  

7 0
3 years ago
Read 2 more answers
Other questions:
  • What is true about resistance? Check all that apply. A. It is the excess accumulation of electric charge B. It is measured in oh
    7·1 answer
  • What's the airplane velocity when it flies 100 miles in 20 seconds<br><br>​
    7·2 answers
  • A box fails to slide down a ramp at a warehouse. what happens if you put the box on a cart that has wheels?
    8·2 answers
  • A student pushes a 2.85 kg cart causing it to accelerate at a rate of 4.9 m/s squared .What amount of force must the student hav
    11·1 answer
  • you and your friend each drive 70 miles you drive 60 miles/hour and your friend. drives 55 miles / hour how much sonner will you
    15·1 answer
  • A gas has an initial volume of 168 cm3 at a temperature of 255 K and a pressure of 1.6 atm. The pressure of the gas decreases to
    11·1 answer
  • How original were Newton’s contributions to science? (In what ways did Newton depend on the mechanical view?)
    12·1 answer
  • what is the true answer in this question?Making a schedule on the things that need to be accomplished yes or no​
    15·1 answer
  • What is the resistance of a light bulb if a potential difference of 120 V will produce a current of 0. 5 A in the bulb? 0. 0042
    8·1 answer
  • A baseball is thrown with an initial velocity of 45.4 m/s at an angle of 31.2 ∘ .
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!