1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
3 years ago
11

Help me plzzzz i have a f in this classs ​

Mathematics
1 answer:
Helen [10]3 years ago
3 0

Answer:

yes it is. ")

Step-by-step explanation:

You might be interested in
How are two figures congruent?
Sedbober [7]

When angles and sides are all equal

3 0
3 years ago
Which equation would have real zero(s) corresponding to the x-intercept(s) of the graph below?
MA_775_DIABLO [31]

Answer:

Choice A.

y =  -  {2}^{x}  + 4

Step-by-step explanation:

Use graphing calculator

7 0
2 years ago
Identify the domain of the function shown in the graph.
tresset_1 [31]

C. x is all real numbers

5 0
3 years ago
Read 2 more answers
Graph for f(x)=6^6 and f(x)=14^x
zlopas [31]

Graph Transformations

There are many times when you’ll know very well what the graph of a

particular function looks like, and you’ll want to know what the graph of a

very similar function looks like. In this chapter, we’ll discuss some ways to

draw graphs in these circumstances.

Transformations “after” the original function

Suppose you know what the graph of a function f(x) looks like. Suppose

d 2 R is some number that is greater than 0, and you are asked to graph the

function f(x) + d. The graph of the new function is easy to describe: just

take every point in the graph of f(x), and move it up a distance of d. That

is, if (a, b) is a point in the graph of f(x), then (a, b + d) is a point in the

graph of f(x) + d.

As an explanation for what’s written above: If (a, b) is a point in the graph

of f(x), then that means f(a) = b. Hence, f(a) + d = b + d, which is to say

that (a, b + d) is a point in the graph of f(x) + d.

The chart on the next page describes how to use the graph of f(x) to create

the graph of some similar functions. Throughout the chart, d > 0, c > 1, and

(a, b) is a point in the graph of f(x).

Notice that all of the “new functions” in the chart di↵er from f(x) by some

algebraic manipulation that happens after f plays its part as a function. For

example, first you put x into the function, then f(x) is what comes out. The

function has done its job. Only after f has done its job do you add d to get

the new function f(x) + d. 67Because all of the algebraic transformations occur after the function does

its job, all of the changes to points in the second column of the chart occur

in the second coordinate. Thus, all the changes in the graphs occur in the

vertical measurements of the graph.

New How points in graph of f(x) visual e↵ect

function become points of new graph

f(x) + d (a, b) 7! (a, b + d) shift up by d

f(x) Transformations before and after the original function

As long as there is only one type of operation involved “inside the function”

– either multiplication or addition – and only one type of operation involved

“outside of the function” – either multiplication or addition – you can apply

the rules from the two charts on page 68 and 70 to transform the graph of a

function.

Examples.

• Let’s look at the function • The graph of 2g(3x) is obtained from the graph of g(x) by shrinking

the horizontal coordinate by 1

3, and stretching the vertical coordinate by 2.

(You’d get the same answer here if you reversed the order of the transfor-

mations and stretched vertically by 2 before shrinking horizontally by 1

3. The

order isn’t important.)

74

7:—

(x) 4,

7c’

‘I

II

‘I’

-I

5 0
2 years ago
A cone and a triangular pyramid have a height of 9.3 m
Otrada [13]

Answer:

x=17.1\ in

Step-by-step explanation:

<u><em>The complete question is</em></u>

A cone and a triangular pyramid have a height of 9.3 m  and their cross-sectional areas are equal at every level  parallel to their respective bases. The radius of the base of the cone is 3 in and the other leg (not x) of the triangle base of the triangular pyramid is 3.3 in

What is the height, x, of the triangle base of the  pyramid? Round to the nearest tenth

The picture of the question in the attached figure

we know that

If their cross-sectional areas are equal at every level  parallel to their respective bases and the height is the same, then their volumes are equal

Equate the volume of the cone and the volume of the triangular pyramid

\frac{1}{3}\pi r^{2}H=\frac{1}{3}[\frac{1}{2}(b)(h)H]

simplify

\pi r^{2}=\frac{1}{2}(b)(h)

we have

r=3\ in\\b=3.3\ in\\h=x\ in\\pi=3.14

substitute the given values

(3.14)(3)^{2}=\frac{1}{2}(3.3)(x)

solve for x

28.26=\frac{1}{2}(3.3)(x)

x=28.26(2)/3.3\\x=17.1\ in

7 0
3 years ago
Read 2 more answers
Other questions:
  • Which property of equality could be used to solve -3x = 348?
    10·1 answer
  • Rita is developing an equation that will represent the same proportional relationship as the graph.
    5·2 answers
  • Se vendieron para una función en el teatro 255 entradas a $130,antes del comienzo de la función,hubo 5 devoluciones,pero luego s
    12·1 answer
  • PLZ HURRY IT'S URGENT!!!!!!!!
    8·2 answers
  • P
    12·1 answer
  • Solve sx+tx=r for x?
    11·1 answer
  • Suppose that there are two types of tickets to a show: advance and same-day. Advance tickets cost $35 and same-day tickets $30 c
    5·1 answer
  • Help me pls i dont understand this
    13·1 answer
  • In ΔOPQ, q = 6.5 inches, o = 8.6 inches and ∠P=55°. Find ∠Q, to the nearest 10th of an degree.
    7·2 answers
  • 22647 inches in meters. show working pls.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!