To solve this problem we will apply the concepts related to the final volume of a body after undergoing a thermal expansion. To determine the temperature, we will use the given relationship as well as the theoretical value of the volumetric coefficient of thermal expansion of copper. This is, for example to the initial volume defined as
, the relation with the final volume as



Initial temperature = 
Let T be the temperature after expanding by the formula of volume expansion
we have,

Where
is the volume coefficient of copper 




Therefore the temperature is 53.06°C
Answer: A medium in which speed of light is more is known as optically rarer medium and a medium in which speed of light is less is said to be optically denser medium. For example in air and water, air is raer and water is a denser medium.
Explanation:
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω