Answer: hello some part of your question is missing attached below is the missing detail
answer :
<em>w</em>f = M( v cos∅ )D / I
Explanation:
The Angular speed <em>wf </em>of the system after collision in terms of the system parameters and I can be expressed as
considering angular momentum conservation
Li = Lf
M( v cos∅ ) D = ( ML^2 / 3 + mD^2 ) <em>w</em>f
where ; ( ML^2 / 3 + mD^2 ) = I ( Inertia )
In terms of system parameters and I
<em>w</em>f = M( v cos∅ )D / I
Answer: option 4: A wire that is 2-mm thick and coiled.
Explanation:
The current in each wire is same. The magnetic field due to a current carrying wire increases if the wire is coiled with the more number of turns. A thick wire would cause low resistance to the current. Hence, a 2-mm thick wire which is coiled would produce the strongest magnetic field.
Answer:
decreases
Explanation:
The angular frequency of the mass is given by

where, k is the spring constant and m be the mass of the body which is doing oscillations.
if the mass of the body increases, so the value of angular frequency decreases, as the angular frequency is inversely proportional to the square root of the mass of the body.
Explanation:
It is given that,
The acceleration of the toboggan, 
Initial speed of the toboggan, u = 0
We need to find the distance covered by the toboggan. Using the second equation of motion as :

At t = 1 s


At t = 2 s


At t = 3 s


Hence, this is the required solution.
Answer:
The presence of strong intermolecular forces favors a condensed state of matter. liquid or solid), while very weak intermolecular interaction favor the gaseous state.