Answer: 1026s, 17.1m
Explanation:
Given
COP of heat pump = 3.15
Mass of air, m = 1500kg
Initial temperature, T1 = 7°C
Final temperature, T2 = 22°C
Power of the heat pump, W = 5kW
The amount of heat needed to increase temperature in the house,
Q = mcΔT
Q = 1500 * 0.718 * (22 - 7)
Q = 1077 * 15
Q = 16155
Rate at which heat is supplied to the house is
Q' = COP * W
Q' = 3.15 * 5
Q' = 15.75
Time required to raise the temperature is
Δt = Q/Q'
Δt = 16155 / 15.75
Δt = 1025.7 s
Δt ~ 1026 s
Δt ~ 17.1 min
Answer:
The magnitude of the resultant of the magnetic field is 
Explanation:
Given that,
Current = 40 A
Magnetic field 
Distance = 22 cm
We need to calculate the magnetic field
Using formula of magnetic field

Where, r = distance
I = current
Put the value into the formula


We need to calculate the magnitude of the resultant of the magnetic field
Using formula of resultant

Put the value into the formula


Hence, The magnitude of the resultant of the magnetic field is 
Answer:
(a) A. Uniform line of charge and B. Uniformly charged sphere
(b) To three digits of precision:
λ = 1.50 * 10^-10 C/m
p = 2.81 * 10^-4 C/m^3
Explanation:
Conduction involves physical contact to charge, well induction does not.
Learn more at: <span>www.physicsclassroom.com/class/estatics/Lesson-2/Charging-by-Conduction</span>