Answer:
Differences
microscopic refers to substances visible to the naked eye
macroscopic are substances invisible to naked eye
Similarities
both refer to different scales that are useful to determining the size to different compounds.
Explanation:
Ima find more
Answer:
A. 1.172 metres
B. 6.82 Ns
C. 4.796 m/s
Explanation:
The total initial momentum is gotten by multiplying the mass and initial velocity of the both bodies.
The 1.40 kg block is at rest so velocity is zero and has no momentum.
The bullet of mass 22 g = 0.022 kg with velocity of 310 m/s
Momentum = 310*0.022
Momentum = 6.82 Ns.
If the bullet gets embedded they will both have common velocity v
6.82 = (0.022+1.40)v
6.82 = 1.422v
V = 6.82/1.422
V = 4.796 m/s
How high the block will rise after the bullet is embedded is given by
H = (U²Sin²tita)/2g
Where tita is 90°
H = (4.796² * sin²(90))/(2*9.81)
H =( 23.001616*1)/19.62
H = 1.172 metres
Answer:
0.137m²
Explanation:
Pressure = Force/Area
Given
Force = 41,500N
Pressure = 3.00atm
since 1atm = 101325.00 N/m²
3atm = 3(101325.00)
3atm = 303,975N/m²
Pressure = 303,975N/m²
Get the area
Area = Force/Pressure
Area = 41500/303,975
Area = 0.137m²'
Hence the surface area of the inside of the tire is 0.137m²
The primary coil has more turns than the secondary coil. so D.
Answer:
Explanation:
Given that:
width b=100mm
depth h=150 mm
length L=2 m =200mm
point load P =500 N
Calculate moment of inertia

Point C is subjected to bending moment
Calculate the bending moment of point C
M = P x 1.5
= 500 x 1.5
= 750 N.m
M = 750 × 10³ N.mm
Calculate bending stress at point C

Calculate the first moment of area below point C

Now calculate shear stress at point C


Calculate the principal stress at point C
![\sigma_{1,2}=\frac{\sigma_x+\sigma_y}{2} \pm\sqrt{(\frac{\sigma_x-\sigma_y}{2} ) + (\tau)^2} \\\\=\frac{666.67+0}{2} \pm\sqrt{(\frac{666.67-0}{2} )^2 \pm(44.44)^2} \ [ \sigma_y=0]\\\\=333.33\pm336.28\\\\ \sigma_1=333.33+336.28\\=669.61KPa\\\\\sigma_2=333.33-336.28\\=-2.95KPa](https://tex.z-dn.net/?f=%5Csigma_%7B1%2C2%7D%3D%5Cfrac%7B%5Csigma_x%2B%5Csigma_y%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B%5Csigma_x-%5Csigma_y%7D%7B2%7D%20%29%20%2B%20%28%5Ctau%29%5E2%7D%20%5C%5C%5C%5C%3D%5Cfrac%7B666.67%2B0%7D%7B2%7D%20%5Cpm%5Csqrt%7B%28%5Cfrac%7B666.67-0%7D%7B2%7D%20%29%5E2%20%5Cpm%2844.44%29%5E2%7D%20%5C%20%5B%20%5Csigma_y%3D0%5D%5C%5C%5C%5C%3D333.33%5Cpm336.28%5C%5C%5C%5C%20%5Csigma_1%3D333.33%2B336.28%5C%5C%3D669.61KPa%5C%5C%5C%5C%5Csigma_2%3D333.33-336.28%5C%5C%3D-2.95KPa)
Calculate the maximum shear stress at piont C
