Molar C6H12O6 = 180.15 g/mol
180.15 g -------------- 6.02x10²³ molecules
?? g ------------------- 3.5x10²² molecules
( 3.5x10²²) x 180.15 / 6.02x10²³ =
=> 10.47 g
In resonance structures, the chemical connectivity in the molecule is same but the distribution of electrons are different around the structure. They are created by moving electrons in double or triple bonds, and not atoms.
Phenol,
and methanol,
both are alcohols that contain an
group attached to carbon atom.
Due to loss of 1
from phenol, it forms phenoxide anion and due to presence of double bond in the benzene ring the negative charge on the oxygen atom (which represents electrons) will resonate with double bonds of benzene ring as shown in the image. The resonance-stabilized phenoxide ion is more stable. Whereas when methanol lose 1
it forms methoxide anion and there are no such electrons present in the structure of methoxide that will result in the movement of electron. Since, due to resonance-stabilized phenoxide ion is more stable than methoxide ion, so it is a stronger acid.
The structures of the anions resulting from loss of 1
from phenol and methanol is shown in the image.
The total volume of water that would be removed will be 75 mL
<h3>Dilution equation</h3>
Using the dilution equation:
M1V1 = M2V2
In this case, M1 = 500 mL, V1 = 10.20 M, M2 = 12 M
Substitute:
V2 = 500 x 10.20/12
= 425 mL
The final volume in order to arrive at 12 M HNO3 would be 425 mL from the initial 500 mL. Thus, the total amount of water that will be removed by evaporation can be calculated as:
500 - 425 = 75 mL
More on dilution can be found here: brainly.com/question/7208939
Colligative properties are usually used in relation to solutions.
Colligative properties are those properties of solutions, which depend on the concentration of the solutes [molecules, ions, etc.] in the solutions and not on the chemical nature of those chemical species. Examples of colligative properties include: vapour pressure depression, boiling point elevation, osmotic pressure, freezing point depression, etc.
For the question given above, the correct option is D. This is because the statement is talking about freezing point elevation, which is not part of colligative properties.