Hi there!

We know that:

U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h
<u>h = 20 meters</u>
1,000 milligrams = 1 gram
2,000 milligrams = 2 grams
3,000 milligrams = 3 grams
4,000 milligrams = 4 grams
Answer:
539 kPa
Explanation:
Pressure equals density times acceleration of gravity times depth.
P = ρgh
Water has a density of 1000 kg/m³, and acceleration of gravity is 9.8 m/s².
P = (1000 kg/m³) (9.8 m/s²) (55.0 m)
P = 539,000 Pa
P = 539 kPa
Answer:
The average atomic mass is 79.91 amu.
Explanation:
Since
Atomic mass can be find by Multiplying the relative abundance of each isotope by its atomic mass, then add them together to get the atomic mass of the element.
so
Atomic mass = (0.5069)(78.92 amu) + (0.4931)(80.92 amu)
=79.91 amu
So the Atomic mass of the bromine is 79.91amu.
Answer:
<h3>displacement can be zero...because it only care about initial and final positions</h3>