Answer:
Option c is correct
Explanation:
There are two types of collisions-elastic collision and inelastic collision.
In elastic collision, both kinetic energy and total momentum are conserved. On the other hand, in inelastic collision, total momentum is conserved but kinetic energy is not conserved. Thus, option b and d are incorrect.
Total energy is always conserved in both types. Thus, option a is incorrect.
In a perfectly inelastic collision, objects stick together. This happens because maximum kinetic energy is dissipated and used in bonding of the two objects. Thus, correct option is c.
Answer:
C. His victory against a superior British foe inspired the American troops.
Explanation:
John Paul Jones is considered the hero in the Revolutionary War. He is known as the Father of the US Navy.
In the Revolutionary War, Jones sided with the American colonists against the British and took hold of naval ships. In 1779, when the British warship <em>Serapis</em> was in conflict with the American warship <em>Bon Homme Richard, </em>Jones plugged the American warship with the Britisher's warship and tossed a grenade into the opponent warship. Thus when Jones was victorious in the war, this boosted the American spirits for the war.
Therefore, option C is the correct answer.
This is Kinematics and the equations in your book.
A speed time graph would plot the speed of something against the teime it was at a speed.
If it were changing it speed constantly, that would be a straight line if acclerating. Total distrance would be the area under the graph.
Answer:
If the two waves have the same amplitude and wavelength, then they alternate between ... In fact, the waves are in phase at any integer multiple of half of a period: ... The propagation velocity of the waves is 175 m/s.
Explanation:
please ask me in brainlist ok
The amount of air resistance<span> an </span>object<span> experiences depends on its speed, its cross-sectional area, its shape and the density of the </span>air<span>. </span>Air<span> densities vary with altitude, temperature and humidity. Nonetheless, 1.29 kg/m</span>3<span> is a very reasonable value. The shape of an </span>object affects<span> the drag coefficient (C</span>d<span>)</span>