Answer:
208.7°C was the initial temperature of the limestone.
Explanation:
Heat lost by limestone will be equal to heat gained by the water

Mass of limestone = 
Specific heat capacity of limestone = 
Initial temperature of the limestone = 
Final temperature =
=T = 51.9°C

Mass of water= 
Specific heat capacity of water= 
Initial temperature of the water = 
Final temperature of water =
=T = 51.9°C



On substituting all values:


208.7°C was the initial temperature of the limestone.
Answer:

Explanation:
The steps of the Ostwald process:



Combinning the equations:

+

+

=

Simplifying:


The overall reaction is endothermic becuase the formation of new chemical bonds requires energy consumption.
Answer:
The major product is 2-methyl-2-pentene [ CH₃-CH₂-CH=C(CH₃)₂ ] and a minor product 2-methyl-1-pentene [ CH₃-CH₂-CH₂-C(CH₃)=CH₂ ].
Explanation:
Dehydration reaction is a reaction in which a molecule loses a water molecule in the presence of a dehydrating agent like sulfuric acid (H₂SO₄).
<u>Dehydration reaction of 2-methyl-2-pentanol</u> gives a major product 2-methyl-2-pentene and a minor product 2-methyl-1-pentene.
CH₃-CH₂-CH₂-C(CH₃)₂-OH (2-methyl-2-pentanol)→ CH₃-CH₂-CH=C(CH₃)₂ (2-methyl-2-pentene, major) + CH₃-CH₂-CH₂-C(CH₃)=CH₂ (2-methyl-1-pentene, minor)
<u>Since more substituted alkene is more stable than the less substituted alkene. So, the trisubstituted alkene, 2-methyl-2-pentene is more stable than the disubstituted alkene, 2-methyl-1-pentene.</u>
<u>Therefore, the trisubstituted alkene, 2-methyl-2-pentene is the major product and the disubstituted alkene, 2-methyl-1-pentene is the minor product.</u>
When a system experiences a disturbance ( such as concentration, temperature, or pressure changes), it will respond to restore a new equilibrium state.
<h3>
Answer:</h3>
A. 860 kg
<h3>
Explanation:</h3>
To answer the question we need to understand that;
- Mass refers to the amount of matter in an object.
- Weight, on the other hand, refers to the gravitational pull of an object to a given surface.
- Mass is measured using a spring balance.
We also need to know that;
- The mass of an object remains constant every where irrespective of the gravitational acceleration.
- Therefore, an object on the surface of the earth would have the same mass as on the surface of the moon.
- In this case; the mass of the car remains the same on the outer space as on the back yard.