<span>1.86 moles of hydrogen gas.
Since what the HCl is reacting with hasn't been mentioned, I'll assume zine. In that case, the balanced reaction is
Zn + 2HCl ==> ZnCl2 + H2
So for every 2 moles of HCl used, 1 mole of hydrogen gas will be generated. So let's figure out how many moles of HCl we have and then divide by 2.
Molarity is defined as moles/liter. So a 2.75 M HCl solution has 2.75 moles of HCl per liter. So the total number of moles we have is:
2.75 mole/L * 1.35 L = 3.7125 mol
And since we get 1 mole H2 per mole of HCl, we get:
3.7125 mol / 2 = 1.85625 mol
Rounding to 3 significant figures gives us 1.86 moles of hydrogen gas.</span>
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.
Electrolysis can be used to separate a substance into its original components/elements and it was through this process that a number of elements have been discovered and are still produced in today's industry.
<span> In order to create a complete full outer shell of electrons.
</span><span /><span>
</span>