Answer:
12.5 J
Explanation:
Force, F = 25 N
Distance, d = 0.5 m
The direction of force and the displacement is same.
Work is defined as the product of force in the direction of displacement and the displacement.
Work = Force x displacement x CosФ
Where, Ф be the angle between force and the displacement
Here, Ф = 0°
So, W = 25 x 0.5 x Cos0°
W = 12.5 J
<span>15 m/s^2
The first thing to calculate is the difference between the final and initial velocities. So
180 m/s - 120 m/s = 60 m/s
So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving
60 m/s / 4.0 s = 15.0 m/s^2
Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2</span>
The correct answers are:
Winds from the ocean reduce the number of clouds.
Winds from the ocean are faster.
HOpe this helps!
We can do this with the conservation of momentum. The fact it is elastic means no KE is lost so we don't have to worry about the loss due to sound energy etc.
Firstly, let's calculate the momentum of both objects using p=mv:
Object 1:
p = 0.75 x 8.5 = 6.375 kgm/s
Object 2 (we will make this one negative as it is travelling in the opposite direction):
p = 0.65 x -(7.2) = -4.68 kgm/s
Based on this we know that the momentum is going to be in the direction of object one, and will be 6.375-4.68=1.695 kgm/s
Substituting this into p=mv again:
1.695 = (0.75+0.65) x v
Note I assume here the objects stick together, it doesn't specify - it should!
1.695 = 1.4v
v=1.695/1.4 = 1.2 m/s to the right (to 2sf)
The work output of a machine can be anything, depending on the friction
and other losses internal to the machine. But it can never be MORE than
the work <u>input</u>.
I suppose you might say that the work output can never be less than zero,
because there's no such thing as negative energy.